
Topical Web Crawlers: Evaluating Adaptive
Algorithms

FILIPPO MENCZER, GAUTAM PANT and PADMINI SRINIVASAN

The University of Iowa

Topical crawlers are increasingly seen as a way to address the scalability limitations of universal
search engines, by distributing the crawling process across users, queries, or even client comput-

ers. The context available to such crawlers can guide the navigation of links with the goal of
efficiently locating highly relevant target pages. We developed a framework to fairly evaluate top-
ical crawling algorithms under a number of performance metrics. Such a framework is employed

here to evaluate different algorithms that have proven highly competitive among those proposed
in the literature and in our own previous research. In particular we focus on the tradeoff be-
tween exploration and exploitation of the cues available to a crawler, and on adaptive crawlers
that use machine learning techniques to guide their search. We find that the best performance is
achieved by a novel combination of explorative and exploitative bias, and introduce an evolution-
ary crawler that surpasses the performance of the best non-adaptive crawler after sufficiently long
crawls. We also analyze the computational complexity of the various crawlers and discuss how

performance and complexity scale with available resources. Evolutionary crawlers achieve high
efficiency and scalability by distributing the work across concurrent agents, resulting in the best
performance/cost ratio.

Categories and Subject Descriptors: H.3.3 [Information Storage and Retrieval]: Information

Search and Retrieval—search process; H.3.4 [Information Storage and Retrieval]: Systems
and Software—distributed systems; information networks; performance evaluation (efficiency
and effectiveness); I.2.6 [Artificial Intelligence]: Learning—neural nets; I.2.8 [Artificial In-
telligence]: Problem Solving, Control Methods, and Search—graph and tree search strategies;
heuristic methods; I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—intelligent
agents; multiagent systems

General Terms: Performance, Measurement, Algorithms, Design

Additional Key Words and Phrases: Topical crawlers, evaluation, efficiency, exploration, exploita-
tion, evolution, reinforcement learning

1. INTRODUCTION

Searching the Web is a difficult task. A lot of machine learning work is being applied
to one part of this task, namely ranking indexed pages by their estimated relevance
with respect to user queries. This is a crucial task because it heavily influences the

This work was funded in part by NSF CAREER grant no. IIS-0133124 to FM and NLM grant
no. RO1-LM06909 to PS.

Authors’ address: F. Menczer and G. Pant, Department of Management Sciences; P. Srinivasan,
School of Library and Information Science; The University of Iowa, Iowa City, IA 52242, USA.
{filippo-menczer,gautam-pant,padmini-srinivasan}@uiowa.edu
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2003 ACM 1529-3785/2003/0700-0001 $5.00

ACM Transactions on Internet Technology, Vol. V, No. N, February 2003, Pages 1–38.

2 · Filippo Menczer et al.

perceived effectiveness of a search engine. Users often look at only a few top hits,
making the precision achieved by the ranking algorithm of paramount importance.
Early search engines ranked pages principally based on their lexical similarity to
the query. The key strategy was to devise the best weighting algorithm to represent
Web pages and queries in a vector space, such that closeness in such a space would
be correlated with semantic relevance.

More recently the structure of hypertext links has been recognized as a powerful
new source of evidence for Web semantics. Many machine learning techniques have
been employed for link analysis, so that a page’s linkage to other pages, together
with its content, could be used to estimate its relevance [Kleinberg and Lawrence
2001]. The best known example of such link analysis is the PageRank algorithm
successfully employed by the Google search engine [Brin and Page 1998]. Other
machine learning techniques to extract meaning from link topology have been based
on identifying hub and authority pages via eigenvalue analysis [Kleinberg 1999] and
on other graph-theoretical approaches [Gibson et al. 1998; Flake et al. 2002; Kumar
et al. 1999]. While purely link-based methods have been found to be effective in
some cases [Flake et al. 2002], link analysis is most often combined with lexical
pre/post-filtering [Brin and Page 1998; Kleinberg 1999].

However, all this research only addresses half of the problem. No matter how
sophisticated the ranking algorithm we build, the results can only be as good as
the pages indexed by the search engine — a page cannot be retrieved if it has not
been indexed. This brings us to the other aspect of Web searching, namely crawling
the Web in search of pages to be indexed. The visible Web with its estimated size
between 4 and 10 billion “static” pages as of this writing [Cyveillance 2000] offers
a challenging information retrieval problem. This estimate is more than double the
2 billion pages that the largest search engine, Google, reports to be “searching.”
In fact the coverage of the Web by search engines has not improved much over the
past few years [Lawrence and Giles 1998; 1999]. Even with increasing hardware
and bandwidth resources at their disposal, search engines cannot keep up with
the growth of the Web. The retrieval challenge is further compounded by the
fact that Web pages also change frequently [Wills and Mikhailov 1999; Cho and
Garcia-Molina 2000; Brewington and Cybenko 2000]. For example Cho and Garcia-
Molina [2000] in their daily crawl of 720,000 pages for a period of about 4 months,
found that it takes only about 50 days for 50% of the Web to change. They also
found that the rate of change varies across domains. For example it takes only
11 days in the .com domain versus 4 months in the .gov domain for the same
extent of change. Thus despite the valiant attempts of search engines to index
the whole Web, it is expected that the subspace eluding indexing will continue to
grow. Hence the solution offered by search engines, i.e., the capacity to answer
any query from any user is recognized as being limited. It therefore comes as no
surprise that the development of topical crawler algorithms has received significant
attention in recent years [Aggarwal et al. 2001; Chakrabarti et al. 1999; Cho et al.
1998; Hersovici et al. 1998; Menczer and Belew 2000; Menczer et al. 2001; Menczer
2003].

Topical crawlers (also known as focused crawlers) respond to the particular infor-
mation needs expressed by topical queries or interest profiles. These could be the
ACM Transactions on Internet Technology, Vol. V, No. N, February 2003.

Topical Web Crawlers · 3

needs of an individual user (query time or online crawlers) or those of a commu-
nity with shared interests (topical or vertical search engines and portals). Topical
crawlers support decentralizing the crawling process, which is a more scalable ap-
proach [O’Meara and Patel 2001; Pant et al. 2003]. An additional benefit is that
such crawlers can be driven by a rich context (topics, queries, user profiles) within
which to interpret pages and select the links to be visited.

Starting with the early breadth first [Pinkerton 1994] and depth first [De Bra and
Post 1994] crawlers defining the beginnings of research on crawlers, we now see a
variety of algorithms. There is Shark Search [Hersovici et al. 1998], a more aggres-
sive variant of De Bra’s Fish Search [1994]. There are crawlers whose decisions rely
heavily on link based criteria [Cho et al. 1998; Diligenti et al. 2000]. Diligenti et al.
[2000], for example, use backlinks based context graphs to estimate the likelihood
of a page leading to a relevant page, even if the source page itself is not relevant.
Others exploit lexical and conceptual knowledge. For example Chakrabarti et al.
[1999] use a hierarchical topic classifier to select links for crawling. Still others
emphasize contextual knowledge [Aggarwal et al. 2001; Menczer and Belew 2000;
Najork and Wiener 2001] for the topic including that received via relevance feed-
back. For example Aggarwal et al. [2001] learn a statistical model of the features
appropriate for a topic while crawling. In previous work by one of the authors,
Menczer and Belew [2000] show that in well-organized portions of the Web, effec-
tive crawling strategies can be learned and evolved by agents using neural networks
and evolutionary algorithms.

The present highly creative phase regarding the design of topical crawlers is
accompanied by research on the evaluation of such crawlers, a complex problem in
and of itself. For example a challenge specific to Web crawlers is that the magnitude
of retrieval results limits the availability of user based relevance judgments. In
previous research we have started to explore several alternative approaches both for
assessing the quality of Web pages as well as for summarizing crawler performance
[Menczer et al. 2001]. In a companion paper [Srinivasan et al. 2002] we expand
such a methodology by describing in detail a framework developed for the fair
evaluation of topical crawlers. Performance analysis is based on both quality and
on the use of space resources. We formalize a class of crawling tasks of increasing
difficulty, propose a number of evaluation metrics based on various available sources
of relevance evidence, analyze the time complexity and scalability of a number of
crawling algorithms proposed in the literature, and study the relationship between
the performance of various crawlers and various topic characteristics.

Our goal in this paper is to examine the algorithmic aspects of topical crawlers.
We have implemented within our evaluation framework a group of crawling algo-
rithms that are representative of the dominant varieties published in the literature.
Based on the evaluation of such crawlers in a particular task, we have designed and
implemented two new classes of crawling algorithms that currently stand as the best
performing crawlers for the task considered. These proposed crawler classes allow
us to focus on two crucial machine learning issues that have not been previously
studied in the domain of Web crawling strategies: (i) the role of exploration versus
exploitation, and (ii) the role of adaptation (learning and evolutionary algorithms)
versus static approaches. Overall, our intention is to obtain a more complete and

ACM Transactions on Internet Technology, Vol. V, No. N, February 2003.

4 · Filippo Menczer et al.

reliable picture of the relative advantages and disadvantages of various crawling
strategies than what can be drawn from the current literature.

In Section 2 we summarize the aspects of our evaluation framework that are
relevant to this study. This includes our system architecture, a formalization of
the crawling task, a description of the dataset used, and the evaluation metrics
employed for assessing both effectiveness and efficiency of the crawlers. Section 3
outlines a number of crawling algorithms proposed in the literature, on which suf-
ficient information is available to allow for our own implementation, and compares
their performance with respect to their effectiveness and efficiency. The scalability
of the algorithms is also analyzed by varying the resource constraints of the crawlers.
A class of best-first crawling algorithms and a class of shark-search algorithms are
introduced in Section 4 and used to study the tradeoff between exploration and
exploitation. The issue of adaptation is discussed in Section 5, using a multi-agent
class of crawling algorithms in which individuals can learn to estimate links by
reinforcement based on local link and lexical cues, while the population can evolve
to bias the exploration process toward areas of the Web that appear promising. In
Section 6 we analyze the robustness of our results in the face of longer crawls, and
finally Section 7 discusses our findings and concludes the paper with ideas about
further research.

2. EVALUATION FRAMEWORK

In order to empirically study the algorithmic issues outlined above, we need to first
illustrate the evaluation framework that we will use in our experiments. Here we
focus on just the aspects of the framework that are relevant to the analyses in this
paper. For a more complete treatment the reader is referred to a companion paper
[Srinivasan et al. 2002].

2.1 System Architecture

Figure 1 illustrates the architecture of the crawler evaluation framework. The sys-
tem is designed so that all the logic about any specific crawling algorithm is encap-
sulated in a crawler module which can be easily plugged into the system through a
standard interface. All crawling modules share public data structures and utilities
to optimize efficiency without affecting the fairness of any evaluations. Examples of
common facilities include a cache, an HTTP interface for the Web, a simple HTML
parser, a stemmer [Porter 1980], benchmarking and reporting routines. The sys-
tem is implemented in Perl with Berkeley embedded databases for storing persistent
data as well as data structures shared across concurrent processes.

Each tested crawler can visit up to MAX PAGES pages per topic, starting from a
seed set. We use a timeout of 10 seconds for Web downloads. Large pages are
chopped so that we retrieve only the first 10 KB. The only protocol allowed is
HTTP GET (with redirection), and we also filter out all but pages with text/html
content. Stale links yielding HTTP error codes are removed as they are found; only
good links are used in the analysis.

2.2 Resource Constraints

Crawlers consume resources: network bandwidth to download pages, memory to
maintain private data structures in support of their algorithms, CPU to evaluate
ACM Transactions on Internet Technology, Vol. V, No. N, February 2003.

Topical Web Crawlers · 5

Concurrent Crawler Logic Concurrent Crawler Logic

Frontier
& Private

Data

Frontier
& Private

Data

Fetcher
Lexical Analyzer

HTML Parser
URL Utils HTTP

URL Mapping
& Cache

Databases
Web

HTTP

Benchmarking
& History Data

Offline Analysis

Topics

Main Keywords
Seed URLs

Descriptions
Target URLs

Fig. 1. Architecture of crawler evaluation framework.

and select URLs, and disk storage to store the (stemmed) text and links of fetched
pages as well as other persistent data. Obviously the more complex the selection
algorithm, the greater the use of such resources. In order to allow for a fair com-
parison of diverse crawling algorithms, we take two measures:

(1) We track the CPU time taken by each crawler for each page and each topic,
ignoring the time taken by the fetch module, which is common to all the crawlers.
We do this since it is impossible to control for network traffic and congestion, and
we want to benchmark only the crawler-specific operations. The monitored CPU
time will be used to compare the complexity of the crawling algorithms.

(2) We limit the memory available to each crawler by constraining the size of
its buffer. This buffer is used by a crawler to temporarily store link data, typically
a frontier of pages whose links have not been explored. Each crawler is allowed
to track a maximum of MAX BUFFER links. If the buffer becomes full, the crawler
must decide which links are to be substituted as new ones are added. The value
of the MAX BUFFER parameter will be varied between 28 and 211 to gauge how the
performance of the crawling algorithms scales with their memory resources. Note
that we set the size of the buffer to such small values because we are particularly
interested in analyzing crawler performance in the most demanding circumstances,

ACM Transactions on Internet Technology, Vol. V, No. N, February 2003.

6 · Filippo Menczer et al.

d=1d=0
(Targets)

d=D
(Seeds)

d=D-1

Fig. 2. Generalized crawl task. A seed page and its path to a target are shown in gray.

i.e., when memory is very scarce. This would be realistic, for example, if a crawler
was deployed as an applet [Pant and Menczer 2002].

2.3 Crawl Task

What should be the starting URLs, i.e., the seed set for a crawler? In the discussion
that follows, we use the word targets to represent a known subset of relevant pages.
If we identify a target set for any given topic, we would like our crawlers to reach
these target pages, and/or pages similar to the targets, from whatever seed pages
are used to begin the crawl.

Figure 2 illustrates a generalized crawl task. Seed pages are chosen so as to
guarantee that from each seed there exist at least one path to some target page,
within a distance of at most D links. In practice we identify the seed pages by first
considering the inlinks of each target page. Submitting a link: query to a search
engine1 yields up to 20 URLs of pages linking to a page. We then repeat this for
each of these first-neighbors, and so on for D steps. Hence, if we had 10 targets to
start with, we would end up with a maximum of 10× 20D unique URLs. A subset
of 10 seed URLs is then picked at random from this set. Note that this procedure
does not guarantee a path from the seed set to every target.

Such a generalized crawl task formalizes a class of problems whose difficulty
intuitively increases with D. For D = 0, the seeds coincide with the targets so that
the crawlers start from pages that are assumed to be relevant. This task mimics the
“query by example” search mode where the user provides the crawler with a few

1At the time of the experiments described here we used http://google.yahoo.com, which al-

lowed us to comply with the Robot Exclusion Standard. Currently we use the Google Web API
(http://www.google.com/apis/).

ACM Transactions on Internet Technology, Vol. V, No. N, February 2003.

Topical Web Crawlers · 7

sample relevant pages. As an alternative strategy these seeds may also be obtained
from a Web search engine. The idea is to see if the crawlers are able to find other
relevant pages for the topic. This is the approach used in most crawler evaluation
research to date (see e.g. Ben-Shaul et al. [1999], Chakrabarti et al. [1999], Diligenti
et al. [2000]).

An assumption implicit in the D = 0 crawl task is that pages that are relevant
tend to be neighbors of each other. Thus the objective of the crawler is to stay
focused, i.e., to remain within the neighborhood in which relevant documents have
been identified. However, the seeds obviously cannot be used to evaluate the per-
formance of a crawler.2 Typical applications of the D = 0 crawl task are query-time
search agents that use results of a search engine as starting points to provide a user
with recent and personalized results [Pant and Menczer 2002]. Such a task may
also be a part of Web mining or competitive intelligence applications, e.g., a search
starting from competitors’ home pages [Pant and Menczer 2003].

For D > 0, crawl seeds are different from the target pages. So in this case there is
little prior information available to the crawlers about the relevant pages when the
crawl begins. The idea is to see if the crawlers are able to find the targets, and/or
other relevant pages. The D > 0 crawl task involves seeking relevant pages while
starting the crawl from links that are a few links away from some known relevant
pages.

With a few exceptions, D > 0 crawl tasks are rarely considered in the literature
although they allow to model problems of varying difficulty. A D > 0 problem
is also realistic since quite commonly users are unable to specify known relevant
URLs. The effort by Aggarwal et al. [2001] is somewhat related to this task in that
the authors start the crawl from general points such as Amazon.com. Although Cho
et al. [1998] start their crawls at a general point, i.e., the Stanford Web site, topics
have rather primitive roles in their research as no target set is identified.

We believe that it is important to understand crawlers within task contexts cor-
responding to more than a single D value, i.e., with varying degrees of difficulty
since they serve different yet valid search modes. For the purposes of this paper we
limit our analyses to one difficult task, D = 3. Note that given the large average
fanout of Web pages, this problem is a bit like looking for a needle in a haystack.
To illustrate this point, observe that a breadth-first crawler would have a chance
in `−D to visit a target from a seed assuming an average fanout of ` links. Starting
from 10 seeds and visiting 1,000 pages, ` ≈ 10 and D = 3 would imply an expected
upper bound of around 10% on the recall of target pages.

2.4 Topics and Targets Dataset

In order to evaluate crawler algorithms, we need topics and some corresponding
relevant targets. One could theoretically generate topics and target sets using fre-
quent queries from search engines and user assessments. However this approach
would make it very expensive to obtain a large number of topics and target sets,
and very cumbersome to keep such a dataset up to date over time given the dy-
namic nature of the Web. Fortunately this data is already available from Web

2A variant of this task would be to use only part of the target set as seed set and evaluate the
crawler’s capability to locate the rest [Pant and Menczer 2003].

ACM Transactions on Internet Technology, Vol. V, No. N, February 2003.

8 · Filippo Menczer et al.

directories updated by human editors. While in our past research we have used
Yahoo!3 due to its popularity [Menczer et al. 2001], in our current work we use the
Open Directory Project4 (ODP) because (i) it has less of a commercial bias, (ii) it
is an “open resource,” and (iii) it is maintained by a very large and diverse number
of volunteer editors.

We collected topics by running randomized breadth-first crawls starting from
each of the main categories on the Open Directory site. These crawls identify ODP
“leaves,” i.e., pages that have no children category nodes. Leaves with five or more
external links are then used to derive topics. A topic is represented by three types
of information derived from the corresponding leaf page. First, the words in the
ODP hierarchy form the topic’s keywords. Second, the external links form the
topic’s targets. Third, we concatenate the text descriptions and anchor text of the
target URLs (written by ODP human editors) to form a topic’s description. The
difference between a topic’s keywords and its description is that we give the former
to the crawlers, as models of (short) query-like topics; and we use the latter, which
is a much more detailed representation of the topic, to gauge the relevance of the
crawled pages in our post-hoc analysis. Table I shows a few sample topics. The
experiments described in this paper use 50 such topics.

2.5 Performance Metrics

In previous research we explored several alternative methodologies for evaluating
crawlers [Menczer 2003; Menczer et al. 2001]. These include methods for assessing
page relevance using linear classifiers, and using similarity computations. We also
explored different methods for summarizing crawler performance such as plotting
the mean similarity of retrieved pages to topic descriptions over time and computing
the average fraction of retrieved pages that were assessed as being “relevant” by
the classifiers (at the end of the crawl). Based upon our previous experience, in a
companion paper we discuss in detail a number of measures that we have selected as
the minimal set needed to provide a well rounded assessment of crawler performance
[Srinivasan et al. 2002]. In particular we propose to assess both recall and precision,
using target and lexical criteria for page relevance. This leads to a set of 4 ·D ·G
performance metrics, where D is the task difficulty parameter and G is a topic
generality parameter.5 Each performance metric can be plotted as a function of
crawling time to yield a dynamic perspective. In addition we assess the efficiency
of the crawling algorithms — an aspect that was not previously considered in the
literature.

In this paper we employ only two of the performance metrics proposed in Srini-
vasan et al. [2002], focusing on the effect of different machine learning techniques
on the performance of crawling algorithms over time. This view is especially ap-
propriate when studying issues such as greediness and adaptation, whose effects are
likely to vary in the course of the crawl. The dynamic measures provide a temporal
characterization of the crawl strategy, by considering the pages fetched while the
crawl is in progress.

3http://www.yahoo.com
4http://dmoz.org
5Considering only ODP leaf topics, as in this paper, is a special case corresponding to G = 0.

ACM Transactions on Internet Technology, Vol. V, No. N, February 2003.

Topical Web Crawlers · 9

Table I. A few sample ODP topics. The descriptions are truncated for space limitations.

Keywords Description Targets

Computers
Software
Workflow
Consulting

Document Management and
Workflow Consulting - EID has
been providing document man-
agement and workflow consult-
ing for over years and is heav-
ily involved in establishing in-
dustry standards Our services
range from feasibility stud-
ies to implementation manage-
ment; Fast Guard Software
Services - Specialized software
sales and consulting for NT and
Exchange networks email di-
rectory synchronization work-
flow document management
NT print management Internet
management Wang and Banyan
migration Eastman Software
WMX SP; FormSoft Group -
Provides enterprise workflow
consulting web application de-
velopment and training to cor-
porate and government enti-
ties; [...]

http://www.eid-inc.com/
http://www.fastguard.com/
http://www.formsoftgroup.com/
http://www.gain.ch/
http://www.iicon.co.uk/
http://www.mondas.com/index.htm
http://www.pdfsolutions.co.uk/

Society
Activism
Consumer

Bad Business Bureau - Rip off
Report is the nationwide con-
sumer reporting web site to en-
ter complaints about compa-
nies and individuals who are
ripping people off; Consumer
Soundoff - Consumer advocate
who offers a free service to
help reconcile consumer dis-
putes and problems with busi-
nesses; Foundation for Tax-
payer and Consumer Rights - A
nationally recognized Califor-
nia based non profit consumer
education and advocacy orga-
nization Deals in insurance re-
form healthcare reform billing
errors and other issues; [...]

http://www.badbusinessbureau.com/
http://soundoff1.tripod.com/
http://www.consumerwatchdog.org/
http://members.tripod.com/~birchmore1/muzak/
http://www.ourrylandhomes.com/
http://www.ripoffrevenge.com/
http://www.konsumentsamverkan.se/english/...
http://www.ucan.org/
http://www.nocards.org/

Sports
Lumberjack

Always Wanted to Be a Lum-
barjack - To grow up and sur-
vive in Hayward WI a few
things to learn; American Bir-
ling Association - Created to
promote log rolling boom run-
ning and river rafting it is
the best source of information
for lumberjack water sports;
American Lumberjack Associa-
tion - A group of sportsmen and
women dedicated to furthering
upgrading and standardizing
timbersports; Lumber Jack Jill
Festival - Festival held in Avoca
New York; Lumberjack Days
- Held in July on the beau-
tiful St Croix River; Lumber-
jack Entertainment And Tim-
bersports Guide - Information
on lumberjack contests shows
world records and competition
equipment; [...]

http://www.subway.com/subpages/namap/usa/lumber/
http://www.logrolling.org/
http://www.americanlumberjacks.com/
http://www.westny.com/logfest.htm
http://www.lumberjackdays.com/
http://www.starinfo.com/ljguide/lumberjack.html
http://www.lumberjackworldchampionships.com/
http://www.canadian-sportfishing.com/...
http://www.starinfo.com/woodsmen/
http://www.orofino.com/Lumberjack.htm
http://lumberjacksports.com/
http://www.stihlusa.com/timbersports.html
http://www.usaxemen.com/
http://www.hotsaw.com/

ACM Transactions on Internet Technology, Vol. V, No. N, February 2003.

10 · Filippo Menczer et al.

The first metric is the simple recall level based on the target pages:

ρ(i) =
|S(i) ∩ T |
|T |

(1)

where S(i) is the set of pages crawled by crawler i and T is the target set. This
measure allows us to determine how well a crawler can locate a few highly relevant
pages. However, there may well be many other relevant pages that are not specified
in the target set. To assess a crawler’s capability to locate these other relevant
pages, we have to estimate the relevance of any crawled page. We do so using the
lexical similarity between a page and the topic description. Recall that the crawlers
do not have any knowledge of topic descriptions, and that these descriptions are
manually compiled by human experts as they describe relevant sites. Therefore
pages similar to these descriptions have a good likelihood to be closely related
to the topic. Rather than inducing a binary relevance assessment by guessing an
arbitrary similarity threshold, in the second metric we measure the mean similarity
between the topic description and the set of pages crawled:

σ(i) =

∑
p∈S(i) cos(p, V)

|S(i)|
(2)

where V is the vector representing the topic description and

cos(p, V) =

∑
k∈p∩V wpkwV k√(∑

k∈p w
2
pk

) (∑
k∈V w

2
V k

) (3)

is the standard cosine similarity function. Here wdk is the TF-IDF weight of term k
in d where inverse document frequency is computed from the crawl set

⋃
i S(i) once

MAX PAGES pages have been visited by each crawler. Both recall ρ and mean simi-
larity σ can be plotted against the number of pages crawled to obtain a trajectory
over time that displays the dynamic behavior of the crawl.

3. CRAWLING ALGORITHMS

Crawlers exploit the Web’s hyperlinked structure to retrieve new pages by traversing
links from previously retrieved ones. As pages are fetched, their outward links may
be added to a list of unvisited pages, which is referred to as the crawl frontier. A
key challenge during the progress of a topical crawl is to identify the next most
appropriate link to follow from the frontier.

The algorithm to select the next link for traversal is necessarily tied to the goals
of the crawler. A crawler that aims to index the Web as comprehensively as pos-
sible will make different kinds of decisions than one aiming to collect pages from
university Web sites or one looking for pages about movie reviews. For the first
crawl order may not be important, the second may consider the syntax of the URL
to limit retrieved pages to the .edu domain, while the third may use similarity with
some source page to guide link selection. Even crawlers serving the same goal may
adopt different crawl strategies.
ACM Transactions on Internet Technology, Vol. V, No. N, February 2003.

Topical Web Crawlers · 11

FIFO queue

Web
page

Links

Fig. 3. A Breadth-First crawler.

Breadth-First (starting_urls) {

foreach link (starting_urls) {

enqueue(frontier, link);

}

while (visited < MAX_PAGES) {

link := dequeue_link(frontier);

doc := fetch(link);

enqueue(frontier, extract_links(doc));

if (#frontier > MAX_BUFFER) {

dequeue_last_links(frontier);

}

}

}

Fig. 4. Pseudocode of the Breadth-First algorithm.

3.1 Crawler Descriptions

In this section we describe and evaluate five different crawling algorithms that
we have implemented within our evaluation framework: Breadth-First, Best-First,
PageRank, Shark-Search, and InfoSpiders. Our selection is intended to be a broad
representation of the crawler algorithms reported in the literature, with an ob-
vious bias toward those that we have been able to reimplement. One of these
algorithms, InfoSpiders, derives from our own prior and current research [Menczer
1997; Menczer and Belew 1998; 2000; Menczer and Monge 1999]. In Section 4 we
will generalize two of these algorithms (Best-First and Shark-Search) through a
parameterization of their greediness level.

3.1.1 Breadth-First. A Breadth-First crawler is the simplest strategy for crawl-
ing. This algorithm was explored as early as 1994 in the WebCrawler [Pinkerton
1994] as well as in more recent research [Cho et al. 1998; Najork and Wiener 2001].
It uses the frontier as a FIFO queue, crawling links in the order in which they are
encountered. Note that when the frontier is full, the crawler can add only one link
from a crawled page. The Breadth-First crawler is illustrated in Figure 3 and the
algorithm is shown in Figure 4. Breadth-First is used here as a baseline crawler;
since it does not use any knowledge about the topic, we expect its performance to
provide a lower bound for any of the more sophisticated algorithms.

3.1.2 Best-First. Best-First crawlers have been studied by Cho et al. [1998] and
Hersovici et al. [1998]. The basic idea is that given a frontier of links, the best link
according to some estimation criterion is selected for crawling. Different Best-First

ACM Transactions on Internet Technology, Vol. V, No. N, February 2003.

12 · Filippo Menczer et al.

Fig. 5. A Best-First crawler.

Priority queue

Web
page

Links

Link estimator

BFS (topic, starting_urls) {

foreach link (starting_urls) {

enqueue(frontier, link, 1);

}

while (visited < MAX_PAGES) {

link := dequeue_top_link(frontier);

doc := fetch(link);

score := sim(topic, doc);

enqueue(frontier, extract_links(doc), score);

if (#frontier > MAX_BUFFER) {

dequeue_bottom_links(frontier);

}

}

}

Fig. 6. Best-First-Search algorithm.

strategies of increasing complexity and (potentially) effectiveness could be designed
on the bases of increasingly sophisticated link estimation criteria. In our “naive”
implementation, the link selection process is guided by simply computing the lexical
similarity between the topic’s keywords and the source page for the link. Thus the
similarity between a page p and the topic keywords is used to estimate the relevance
of the pages pointed by p. The URL with the best estimate is then selected for
crawling. Cosine similarity is used by the crawler and the links with minimum
similarity score are removed from the frontier if necessary in order to not exceed
the limit size MAX BUFFER. Figure 5 illustrates a Best-First crawler, while Figure 6
offers a simplified pseudocode of the Best-First-Search (BFS) algorithm. The sim()
function returns the cosine similarity between topic and page:

sim(q, p) =

∑
k∈q∩p fkqfkp√(∑

k∈p f
2
kp

)(∑
k∈q f

2
kq

) (4)

where q is the topic, p is the fetched page, and fkd is the frequency of term k in d.
Preliminary experiments in a D = 0 task have shown that BFS is a competitive

crawler [Menczer et al. 2001], therefore here we want to assess how it compares
ACM Transactions on Internet Technology, Vol. V, No. N, February 2003.

Topical Web Crawlers · 13

PageRank (topic, starting_urls, frequency) {

foreach link (starting_urls) {

enqueue(frontier, link);

}

while (visited < MAX_PAGES) {

if (multiplies(visited, frequency)) {

recompute_scores_PR;

}

link := dequeue_top_link(frontier);

doc := fetch(link);

score_sim := sim(topic, doc);

enqueue(buffered_pages, doc, score_sim);

if (#buffered_pages >= MAX_BUFFER) {

dequeue_bottom_links(buffered_pages);

}

merge(frontier, extract_links(doc), score_PR);

if (#frontier > MAX_BUFFER) {

dequeue_bottom_links(frontier);

}

}

}

Fig. 7. Pseudocode of the PageRank crawler.

with other algorithms in a more challenging crawling task.

3.1.3 PageRank. PageRank was proposed by Brin and Page [1998] as a possible
model of user surfing behavior. The PageRank of a page represents the probability
that a random surfer (one who follows links randomly from page to page) will be
on that page at any given time. A page’s score depends recursively upon the scores
of the pages that point to it. Source pages distribute their PageRank across all of
their outlinks. Formally:

PR(p) = (1− γ) + γ
∑

{d∈in(p)}

PR(d)
|out(d)|

(5)

where p is the page being scored, in(p) is the set of pages pointing to p, out(d) is the
set of links out of d, and the constant γ < 1 is a damping factor that represents the
probability that the random surfer requests another random page. As originally
proposed PageRank was intended to be used in combination with content based
criteria to rank retrieved sets of documents [Brin and Page 1998]. This is in fact
how PageRank is used in the Google search engine. More recently PageRank has
been used to guide crawlers [Cho et al. 1998] and to assess page quality [Henzinger
et al. 1999].

In previous work we evaluated a crawler based on PageRank [Menczer et al. 2001].
We used an efficient algorithm to calculate PageRank [Haveliwala 1999]. Even so,
as one can see from Equation 5, PageRank requires a recursive calculation until
convergence, and thus its computation can be a very resource intensive process. In
the ideal situation we would recalculate PageRanks every time a URL needs to be
selected from the frontier. Instead, to improve efficiency, we recomputed PageRanks
only at regular intervals.

ACM Transactions on Internet Technology, Vol. V, No. N, February 2003.

14 · Filippo Menczer et al.

Shark (topic, starting_urls) {

foreach link (starting_urls) {

set_depth(link, d);

enqueue(frontier, link);

}

while (visited < MAX_PAGES) {

link := dequeue_top_link(frontier);

doc := fetch(link);

doc_score := sim(topic, doc);

if (depth(link) > 0) {

foreach outlink (extract_links(doc)) {

score = (1-r) * neighborhood_score(outlink)

+ r * inherited_score(outlink);

if (doc_score > 0) {

set_depth(outlink, d);

} else {

set_depth(outlink, depth(link) - 1);

}

enqueue(frontier, outlink, score);

}

if (#frontier > MAX_BUFFER) {

dequeue_bottom_link(frontier);

}

}

}

}

Fig. 8. Pseudocode of the Shark-Search crawler.

The PageRank crawler can be seen as a variant of Best-First, with a different link
evaluation function (see Figure 5). The algorithm is illustrated in Figure 7. The
sim() function returns the cosine similarity between a topic’s keywords and a page
as measured according to Equation 4, and the PageRank is computed according to
Equation 5. Note that the PageRank algorithm has to maintain a data structure of
visited pages in addition to the frontier, in order to compute PageRank. This buffer
can contain at most MAX BUFFER pages. We assume pages with 0 out-degree (such
as the URLs in the frontier) to be implicitly linked to every page in the buffer, as
required for the PageRank algorithm to converge. We use γ = 0.8 and the threshold
for convergence is set at 0.01.

3.1.4 Shark-Search. Shark-Search [Hersovici et al. 1998] is a more aggressive
version of Fish-Search [De Bra and Post 1994]. In Fish-Search, the crawlers search
more extensively in areas of the Web in which relevant pages have been found. At
the same time, the algorithm discontinues searches in regions that do not yield
relevant pages. Shark-Search offers two main improvements over Fish-Search. It
uses a continuous valued function for measuring relevance as opposed to the binary
relevance function in Fish-Search. In addition, Shark-Search has a more refined
notion of potential scores for the links in the crawl frontier. The potential score of
links is influenced by anchor text, text surrounding the links, and inherited score
from ancestors (pages pointing to the page containing the links).

The Shark-Search crawler can be seen as a variant of Best-First, with a more
sophisticated link evaluation function (see Figure 5). Figure 8 shows the pseudocode
ACM Transactions on Internet Technology, Vol. V, No. N, February 2003.

Topical Web Crawlers · 15

Local priority
queue

Web
page

Links

Adaptive link
estimator

Fig. 9. A population of InfoSpiders.

of the Shark-Search algorithm. The parameters d and r represent respectively
the maximum depth and the relative importance of inherited versus neighborhood
scores. In our implementation we set d = 3 and r = 0.1. This closely follows the
details given by Hersovici et al. [1998].

3.1.5 InfoSpiders. In InfoSpiders [Menczer 1997; Menczer and Belew 1998; 2000;
Menczer and Monge 1999], an adaptive population of agents search for pages rel-
evant to the topic using evolving query vectors and neural nets to decide which
links to follow. The idea is illustrated in Figure 9. This evolutionary approach
uses a fitness measure based on similarity as a local selection criterion. The origi-
nal algorithm (see, e.g., Menczer and Belew [2000]) was previously simplified and
implemented as a crawler module [Menczer et al. 2001]. This crawler was outper-
formed by BFS due to its extreme local behavior and the absence of any memory
— once a link was followed the agent could only visit pages linked from the new
page. Since then we have made a number of improvements to the original algorithm
while retaining its capability to learn link estimates via neural nets and focus its
search toward more promising areas by selective reproduction. The resulting novel
algorithm is schematically described in the pseudocode of Figure 10.

InfoSpiders agents are independent from each other and crawl in parallel. The
adaptive representation of each agent consists of a list of keywords (initialized with
the topic keywords) and a neural net used to evaluate new links. Each input unit
of the neural net receives a count of the frequency with which the keyword occurs
in the vicinity of each link to be traversed, weighted to give more importance
to keywords occurring near the link (and maximum in the anchor text). There
is a single output unit. One of the simplifications that we have retained in this
implementation is that the neural networks do not have hidden layers, therefore
consisting of simple perceptrons. What this implies is that although a neural net’s
output unit computes a nonlinear sigmoidal function of the input frequencies, the
neural network can only learn linear separations of the input space. However we feel

ACM Transactions on Internet Technology, Vol. V, No. N, February 2003.

16 · Filippo Menczer et al.

IS (topic, starting_urls) {

agent.topic := topic;

agent.energy := 0;

agent.fsize := MAX_BUFFER;

agent.frontier := starting_urls;

insert(agent, population);

while (visited < MAX_PAGES) {

foreach parallel agent (population) {

link := pick_and_dequeue(agent.frontier);

doc := fetch(link);

newenergy = sim(agent.topic, doc);

agent.energy += newenergy;

learn_to_predict(agent.nnet, newenergy);

foreach outlink (extract_links(doc)) {

score = ALPHA * newenergy +

(1 - ALPHA) * agent.nnet(doc, outlink);

enqueue(agent.frontier, outlink, score);

}

if (#agent.frontier > agent.fsize) {

dequeue_bottom_links(agent.frontier);

}

delta := newenergy - sim(topic, agent.doc);

if (boltzmann(delta)) {

agent.doc := doc;

}

if (agent.energy > THETA and pop_size < MAX_POP_SIZE) {

child.topic := expand(agent.topic, agent.doc);

(child.energy, agent.energy) := (0, 0);

(child.fsize, agent.fsize) := half(agent.fsize);

(child.frontier, agent.frontier) := split(agent.frontier);

child.nnet := extend(agent.nnet, child.topic)

insert(child, population);

}

}

}

}

Fig. 10. Pseudocode of the InfoSpiders algorithm. In the actual implementation, each agent
executes as a concurrent process.

that this is a powerful enough representation to internalize the levels of correlation
between relevance and the distributions of keywords around links. The output
of the neural net is used as a numerical quality estimate for each link considered
as input. These estimates are then combined with estimates based on the cosine
similarity (Equation 4) between the agent’s keyword vector and the page containing
the links. A parameter α, 0 ≤ α ≤ 1 regulates the relative importance given to the
estimates based on the neural net versus the parent page. Based on the combined
score, the agent uses a stochastic selector to pick one of the links with probability

Pr(λ) =
eβµ(λ)∑

λ′∈p e
βµ(λ′)

(6)

where λ is a link from page p and µ(λ) is its combined score. The β parameter
regulates the greediness of the link selector. In the experiments described in this
ACM Transactions on Internet Technology, Vol. V, No. N, February 2003.

Topical Web Crawlers · 17

paper we use α = 0.5 and β = 5.
After a new page has been fetched, the agent receives energy in proportion to the

similarity between its keyword vector and the new page (Equation 4). The agent’s
neural net can be trained to improve the link estimates by predicting the similarity
of the new page, given the inputs from the page that contained the link leading to
it. We use one epoch of standard error back-propagation [Rumelhart et al. 1986]
with a learning rate 0.5. Such a simple reinforcement learning technique provides
InfoSpiders with the unique capability to adapt the link-following behavior in the
course of a crawl by associating relevance estimates with particular patterns of key-
word frequencies around links. While InfoSpiders was the first crawling algorithm
to use reinforcement learning [Menczer 1997], others have considerably expanded
on this idea [Rennie and McCallum 1999; McCallum et al. 1999; O’Meara and Patel
2001].

An agent moves to the newly selected page only if the boltzmann() function
returns a true condition (cf. Figure 10). This is determined stochastically based
on the probability

Pr(δ) =
1

1 + e−δ/T
(7)

where δ is the difference between the similarity of the new and current page to the
agent’s keyword vector and T = 0.1 is a temperature parameter.

An agent’s energy level is used to determine whether or not an agent should
reproduce after visiting a page. An agent reproduces when the energy level passes
the constant threshold THETA=2. At reproduction, the offspring receives half of the
parent’s link frontier. The offspring’s keyword vector is also mutated (expanded)
by adding the term that is most frequent in the parent’s current document. Such
a mutation provides InfoSpiders with the unique capability to adapt the search
strategy based on new clues captured from promising pages, while reproduction
itself allows the population to bias the search toward areas (agents) that lead to
good pages.

There can be at most MAX POP SIZE=8 agents, maintaining a distributed frontier
whose total size does not exceed MAX BUFFER. The behavior of individual agents is
still based on localized link estimates and keyword expansion, however unlike in the
original algorithm, each agent retains a more global representation of the search
space in its frontier.

Others have explored the use of evolutionary algorithms for Web search problems.
For example a genetic algorithm has been applied to evolve populations of keywords
and logic operators, used to collect and recommend pages to the user [Moukas and
Zacharia 1997; Nick and Themis 2001]. In such systems the learning process is
sustained by meta-search engines and guided by relevance feedback from the user,
while in this paper we are interested in agents that can actually crawl the Web and
learn from unsupervised interactions with the environment.

3.2 Experimental Results

We now outline the results of a number of crawls carried out to evaluate and com-
pare performance, efficiency and scalability for the crawling algorithms described
in Section 3.1.

ACM Transactions on Internet Technology, Vol. V, No. N, February 2003.

18 · Filippo Menczer et al.

Fig. 11. Average similarity to

topic descriptions by PageRank
and Best-First crawlers on a
D = 0 task. The data (from

Menczer et al. [2001]) is based
on 53 topics.

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0 200 400 600 800 1000

av
er

ag
e

si
m

ila
rit

y
pages crawled

 MAX_BUFFER=200
PR

BFS

Unless otherwise stated, the results in this and the following sections are based
theD = 3 crawling task and the MAX PAGES parameter is set to 1,000. These settings
correspond to a particularly difficult task in which the relevant pages are far away
and the crawler can only visit a very small number of pages — possibly while the
user awaits [Pant and Menczer 2002]. As discussed in Section 2.3 this challenging
task is akin to searching for needles in a haystack, making it an interesting test
problem on which to evaluate the various crawlers.

Also unless otherwise stated, the results in this and the following sections are
based on averages across 50 topics. Throughout the paper, error bars in plots
correspond to ±1 standard error, i.e. standard deviation of the mean across topics.
We interpret non-overlapping error bars as a statistically significant difference at
the 68% confidence level assuming normal noise.

3.2.1 Dynamic Performance. In our prior experiments the PageRank crawler
was found not to be competitive (worse than Breadth-First) due to its minimal
exploitation of the topic context and its resource limitations [Menczer et al. 2001].
The PageRank metric is designed as a global measure and its values are of little
use when computed over a small set of pages. To illustrate, Figure 11 plots average
similarity to topic descriptions in a D = 0 crawl, i.e., starting from target pages.
Given the poor performance of PageRank under the performance measures and
tasks we use here, we will not further report on this crawling algorithm in the
remainder of this paper.

The performance of the other four crawlers — Breadth-First, Best-First, Shark-
Search and InfoSpiders — is compared in Figure 12. We ran four variations of each
crawling algorithm for values of MAX BUFFER between 28 = 256 and 211 = 2, 048.6

Recall and similarity yield qualitatively consistent results. As expected Breadth-
First performs poorly and thus constitutes a baseline. Surprisingly, Shark-Search
does not perform significantly better than Breadth-First except for one case, the
similarity metric for MAX BUFFER=256. Our intuition for the poor performance of
Shark-Search is that this algorithm may not be sufficiently explorative (see Sec-
tion 4). Best-First and InfoSpiders significantly outperform the other two crawlers

6Error bars are a bit larger for MAX BUFFER=2,048 because the averages are based on only 28 topics
due to time constraints.

ACM Transactions on Internet Technology, Vol. V, No. N, February 2003.

Topical Web Crawlers · 19

0

0.1

0.2

0.3

0.4

0.5

0.6

0 200 400 600 800 1000

av
er

ag
e

re
ca

ll

�

pages crawled

 MAX_BUFFER=256
Shark

BreadthFirst
IS

BFS

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0 200 400 600 800 1000

av
er

ag
e

si
m

ila
rit

y

pages crawled

 MAX_BUFFER=256
Shark

BreadthFirst
IS

BFS

0

0.1

0.2

0.3

0.4

0.5

0.6

0 200 400 600 800 1000

av
er

ag
e

re
ca

ll

�

pages crawled

 MAX_BUFFER=512
Shark

BreadthFirst
IS

BFS

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0 200 400 600 800 1000

av
er

ag
e

si
m

ila
rit

y

pages crawled

 MAX_BUFFER=512
Shark

BreadthFirst
IS

BFS

0

0.1

0.2

0.3

0.4

0.5

0.6

0 200 400 600 800 1000

av
er

ag
e

re
ca

ll

�

pages crawled

 MAX_BUFFER=1024
Shark

BreadthFirst
IS

BFS

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0 200 400 600 800 1000

av
er

ag
e

si
m

ila
rit

y

pages crawled

 MAX_BUFFER=1024
Shark

BreadthFirst
IS

BFS

0

0.1

0.2

0.3

0.4

0.5

0.6

0 200 400 600 800 1000

av
er

ag
e

re
ca

ll

�

pages crawled

 MAX_BUFFER=2048
Shark

BreadthFirst
IS

BFS

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0 200 400 600 800 1000

av
er

ag
e

si
m

ila
rit

y

pages crawled

 MAX_BUFFER=2048
Shark

BreadthFirst
IS

BFS

Fig. 12. Average target recall (left) and similarity to topic descriptions (right) by the Breadth-

First, Best-First, Shark-Search and InfoSpiders crawlers on the D = 3 task. The plots in each row

correspond to a different value of MAX BUFFER between 256 and 2, 048.

ACM Transactions on Internet Technology, Vol. V, No. N, February 2003.

20 · Filippo Menczer et al.

by the end of the crawls, except for the similarity metric in the MAX BUFFER=2048
case, where InfoSpiders suffers a large initial loss from which it has not fully recov-
ered after 1,000 pages.

While Best-First displays an advantage over InfoSpiders in the early stage of the
crawls, by the time 1,000 pages are crawled the difference is no longer significant in
most cases (with the exception of recall for MAX BUFFER=2048). These plots seem
to suggest that in the initial stages of the crawls BFS is helped by its greediness
while InfoSpiders pays a penalty for its adaptability — the neural networks are
not trained, the evolutionary bias has not yet had a chance to kick in, and the
stochastic selector makes some locally suboptimal choices. However those features
prove more useful in the later stages of the crawl. For example the similarity to
topic descriptions seems to hold steady or improve slightly for InfoSpiders in 3 of
the 4 graphs while all the other crawlers show a downward trend after 200 pages.

3.2.2 Scalability. Figure 12 shows that performance is affected by the value
of the MAX BUFFER parameter. Note that even when MAX BUFFER > MAX PAGES,
performance can be affected by frontier size because the number of links encountered
by a crawler is typically much larger than the number of pages visited. But while
the limited buffer size forces any crawler to remove many links from its frontier,
which links are eliminated depends on the crawler algorithm. To better assess how
the various crawling algorithms scale with the space (memory) resources available to
them, Figure 13 plots performance (target recall and similarity to topic descriptions
at 1,000 pages) versus MAX BUFFER.

Breadth-First, Shark-Search and Best-First do not appear to be affected by the
frontier size, with one exception; similarity to topic descriptions increases signif-
icantly for Breadth-First when MAX BUFFER goes from 256 to 512. This indicates
that the limitation of space resources will hurt a crawling algorithm more if it can-
not prioritize over its links, due to the higher risk of throwing away good links. For
InfoSpiders, performance seems to decrease with increasing frontier size. We will
discuss this effect in Section 7.

3.2.3 Efficiency. Let us now analyze the time complexity of the various crawling
algorithms. We focus on CPU time, since all crawlers are equally subject to noisy
network I/O delays. We also exclude the CPU time taken by common utility
functions shared by all crawlers (cf. Section 2.1).

While we have made an effort to employ appropriate data structures and algo-
rithms, naturally we can only evaluate the efficiency of our own implementations
of the crawlers. Consider for example the data structure used to implement the
frontier priority queue in the Best-First algorithm. The basic operations of insert-
ing and removing links from the queue are most efficiently supported by a heap,
yielding O(log(MAX BUFFER)) complexity. However it is also necessary to check
if a newly extracted URL is already in the frontier; this has linear complexity
in a heap, and must be done for each link in a newly crawled page. Alterna-
tively, using an associative array or hash table, this checking operation is cheap
(O(1)) but inserting and removing links requires an expensive sorting operation
(O(MAX BUFFER · log(MAX BUFFER))) once per page crawled. The asymptotic com-
plexity of priority queue operations per crawled page is O(L · MAX BUFFER) for the
ACM Transactions on Internet Technology, Vol. V, No. N, February 2003.

Topical Web Crawlers · 21

0

0.1

0.2

0.3

0.4

0.5

0.6

256 512 1024 2048

av
er

ag
e

re
ca

ll

�

MAX_BUFFER

Shark
BreadthFirst

BFS
IS

0.08

0.09

0.1

0.11

0.12

0.13

0.14

256 512 1024 2048

av
er

ag
e

si
m

ila
rit

y

MAX_BUFFER

Shark
BreadthFirst

BFS
IS

Fig. 13. Scalability of aver-

age target recall (top) and of

similarity to topic descriptions
(bottom) with MAX BUFFER by

the Breadth-First, Best-First,
Shark-Search and InfoSpiders

crawlers.

heap and O(L+MAX BUFFER · log(MAX BUFFER)) for the hash, where L is the average
number of links per page. Figure 14 plots the actual costs for L = 7, which is
an accurate estimate for the Web [Kumar et al. 2000]. The plot shows that while
in the range of MAX BUFFER used in our experiments the two data structures yield
very similar efficiency, the hash is preferable for improved crawlers described in
Section 4. For this reason we use an associative array to store the link frontier, not
only in Best-First but in the other crawlers as well. Even so, further optimization
may be possible for some of the crawlers and therefore we cannot claim that our
efficiency analysis will necessarily apply to other implementations.

Another caveat is that the actual time taken by any algorithm is irrelevant since
it depends largely on the load and hardware configuration of the machine(s) used
to run the crawls — even the crawling experiments described in this paper were
run on a large number of machines with widely different hardware configurations
and changing loads. To obtain a measure of time complexity that can be useful to
compare the efficiency of the crawlers, we introduce a relative cost c of crawler i
as the ratio between the time taken by i to visit p pages and the mean cumulative
time taken by a set of crawlers to visit MAX PAGES pages:

cp(i) =
tp(i) · |C|∑

i′∈C tMAX PAGES(i′)
(8)

ACM Transactions on Internet Technology, Vol. V, No. N, February 2003.

22 · Filippo Menczer et al.

Fig. 14. Asymptotic complex-

ity of priority queue operations

in crawlers using heap and hash
data structures. Higher L val-

ues (L > 7) and/or smaller
MAX BUFFER values make the

comparison more favorable for

the hash, and vice-versa. The
BFS256 line corresponds to an

algorithm described in Section 4,
where the hash is sorted only

once every 256 pages crawled.

100

1000

10000

256 512 1024 2048

as
ym

pt
ot

ic
 q

ue
ue

 c
os

t p
er

 p
ag

e
MAX_BUFFER

BFS heap
BFS hash

 BFS256 hash

where C is a set of crawlers and i ∈ C. The relative cost metric is robust with re-
spect to crawling different topics from different machines, as long as all the crawlers
run a single topic from the same machine.

Another useful metric would be one that combines the two sources of evidence
for performance with efficiency. To this end let us define a performance/cost metric
P as the ratio between performance and relative cost of a crawler i, where the
former is given by the product of mean target recall and mean similarity to topic
descriptions after p pages:

Pp(i) =
〈ρp(i)〉Q · 〈σp(i)〉Q

〈cp(i)〉Q
(9)

where Q is the set of topics.
Figure 15 plots both c1000 and P1000 versus MAX BUFFER for the four crawlers.

Shark-Search is the most expensive crawler and Breadth-First, as expected, is the
most efficient. Breadth-First becomes more efficient for larger frontier size since it
has to trim its frontier less frequently. Best-First has intermediate complexity. It
becomes less efficient with increasing frontier size because there are more links to
compare. What is most surprising, InfoSpiders is almost as efficient as Breadth-
First, with the two time complexities converging for MAX BUFFER=2,048. We discuss
the decreasing complexity of InfoSpiders with increasing frontier size in Section 5.

The performance/cost ratio plot in Figure 15 yields InfoSpiders as the winner
owing to its good performance and excellent efficiency. There is also a clear positive
trend with increasing frontier size. Best-First pays a price for its complexity and is
surpassed by Breadth-First for all but the smallest frontier size. Poor performance
and inefficiency place Shark-Search in the last position. Clearly these results are
strongly dependent upon the time complexity of the algorithms and their usefulness
will depend on the particular application of the crawlers.

4. EXPLORATION VERSUS EXPLOITATION

In this section we raise the issue of exploration versus exploitation as a defining
characteristic of a Web crawler. This issue is a universal one in machine learning
and artificial intelligence, since it presents itself in any task where search is guided
by quality estimations. Under some regularity assumption, a measure of quality at
ACM Transactions on Internet Technology, Vol. V, No. N, February 2003.

Topical Web Crawlers · 23

0

0.5

1

1.5

2

2.5

3

256 512 1024 2048

re
la

tiv
e

co
st

MAX_BUFFER

Shark
BreadthFirst

BFS
IS

0

0.05

0.1

0.15

0.2

0.25

256 512 1024 2048

pe
rf

or
m

an
ce

/c
os

t

�

MAX_BUFFER

Shark
BreadthFirst

BFS
IS

Fig. 15. Scalability of time
complexity (top) and perfor-

mance/cost ratio (bottom) with

MAX BUFFER by the Breadth-
First, Best-First, Shark-Search

and InfoSpiders crawlers.

one point in the search space provides some information on the quality of nearby
points. A greedy algorithm can then exploit this information by concentrating the
search in the vicinity of the most promising points. However, this strategy can
lead to missing other equally good or even better points, for two reasons: first, the
estimates may be noisy; and second, the search space may have local optima that
trap the algorithm and keep it from locating global optima. In other words, it may
be necessary to visit some “bad” points in order to arrive at the best ones. At the
other extreme, algorithms that completely disregard quality estimates and continue
to explore in a uniform or random fashion do not risk getting stuck at local optima,
but they do not use the available information to bias the search and thus may spend
most of their time exploring suboptimal areas. A balance between exploitation and
exploration of clues is obviously called for in heuristic search algorithms, but the
optimal compromise point is unknown unless the topology of the search space is
well understood — which is typically not the case for interesting search spaces.

Topical crawlers fit into this picture very well if one views the Web as the search
space, with pages as points and neighborhoods as defined by hyperlinks. A crawler
must decide which pages to visit based on the cues provided by links from nearby
pages. If one assumes that a relevant page has a higher probability to be near other
relevant pages than to any random page, then quality estimate of pages provide
cues that can be exploited to bias the search process. However, given the short

ACM Transactions on Internet Technology, Vol. V, No. N, February 2003.

24 · Filippo Menczer et al.

BFS_N (topic, starting_urls, N) {

foreach link (starting_urls) {

enqueue(frontier, link);

}

while (visited < MAX_PAGES) {

links_to_crawl := dequeue_top_links(frontier, N);

foreach link (randomize(links_to_crawl)) {

doc := fetch(link);

score := sim(topic, doc);

merge(frontier, extract_links(doc), score);

if (#frontier > MAX_BUFFER) {

dequeue_bottom_links(frontier);

}

}

}

}

Fig. 16. Pseudocode of BFSN crawlers. BFS1 (N = 1) corresponds to the algorithm in Figure 6.

range of relevance clues across the Web graph [Menczer 2002], a very relevant page
might be only a few links behind an apparently irrelevant one. Balancing the
exploitation of quality estimate information with exploration of suboptimal pages
may be crucial for the performance of topical crawlers, something that we want to
confirm empirically here.

4.1 Crawler Descriptions

In this section we describe generalized versions of the Best-First [Pant et al. 2002]
and Shark-Search crawlers, designed to tune the greediness level of these crawlers
and thus study the tradeoff between exploitation and exploration that is appropriate
in a crawling application.

4.1.1 Generalized Best-First. Best-First was described in Section 3.1.3. BFSN
is a generalization of BFS in that at each iteration a batch of top N links to crawl
are selected. After completing the crawl of N pages the crawler decides on the next
batch of N and so on. Figure 16 offers a simplified pseudocode of the BFSN class.

BFSN offers an ideal context for our study. The parameter N controls the greedy
behavior of the crawler. Increasing N results in crawlers with greater emphasis on
exploration and consequently a reduced emphasis on exploitation. Decreasing N
reverses this; selecting a smaller set of links is more exploitative of the evidence
available regarding the potential merits of the links. In our experiments we test
five BFSN crawlers by setting N to 1, 16, 64, 128 and 256. Note that increasing
N also results in increased efficiency because the frontier only needs to be sorted
every N pages (cf. Figure 14).

4.1.2 Generalized Shark-Search. Shark-Search was described in Section 3.1.4.
Figure 17 shows the pseudocode of our SharkN class of crawlers, which generalizes
the “standard” Shark algorithm in the same way that BFSN extends BFS. At each
iteration a batch of top N links to crawl are selected. After completing the crawl
of N pages the crawler decides on the next batch of N and so on. Thus SharkN
can be made more exploitative or explorative by varying N just as for Best-First.
ACM Transactions on Internet Technology, Vol. V, No. N, February 2003.

Topical Web Crawlers · 25

Shark_N (topic, starting_urls, N) {

foreach link (starting_urls) {

set_depth(link, d);

enqueue(frontier, link);

}

while (visited < MAX_PAGES) {

links_to_crawl := dequeue_top_links(frontier, N);

foreach link (randomize(links_to_crawl)) {

doc := fetch(link);

doc_score := sim(topic, doc);

if (depth(link) > 0) {

foreach outlink (extract_links(doc)) {

score = (1-r) * neighborhood_score(outlink)

+ r * inherited_score(outlink);

if (doc_score > 0) {

set_depth(outlink, d);

} else {

set_depth(outlink, depth(link) - 1);

}

enqueue(frontier, outlink, score);

}

if (#frontier > MAX_BUFFER) {

dequeue_bottom_links(frontier);

}

}

}

}

}

Fig. 17. Pseudocode of SharkN crawlers. Shark1 (N = 1) corresponds to the algorithm in
Figure 8.

4.1.3 Greediness in Other Crawlers. Any crawler algorithm can be made more
explorative or exploitative by regulating the amount of noise in its link estimates.
In the case of PageRank, the frequency with which PageRank calculations are
redone is key to its greediness level; the more frequent the calculations, the more
exploitative the crawler.

In InfoSpiders we can regulate greediness by changing the value of β, the inverse-
temperature parameter used in the stochastic selector (Equation 6). We increase β
to get greater exploitation and decrease it for greater exploration, with the extreme
case β = 0 generating a uniform probability distribution over the frontier.

4.2 Experimental Results

Here we focus on the BFSN and SharkN classes of crawlers whose behavior is the
most straightforward to interpret in terms of the exploration parameter N . The
results in this section summarize and extend preliminary experiments [Pant et al.
2002] showing that for BFSN crawlers, N = 256 yields the best performance under
a number of measures, for 20 ≤ N ≤ 28.

4.2.1 Dynamic Performance. The dynamic results are summarized in Figure 18.
The parameter MAX BUFFER is set to 256 links. For readability, we are only plotting
the performance of a selected subset of the BFSN crawlers (N = 1 and N =

ACM Transactions on Internet Technology, Vol. V, No. N, February 2003.

26 · Filippo Menczer et al.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 200 400 600 800 1000

av
er

ag
e

re
ca

ll

�

pages crawled

 MAX_BUFFER=256
BFS256

BFS

0.09

0.1

0.11

0.12

0.13

0.14

0 200 400 600 800 1000

av
er

ag
e

si
m

ila
rit

y

pages crawled

 MAX_BUFFER=256
BFS256

BFS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 200 400 600 800 1000

av
er

ag
e

re
ca

ll

�

pages crawled

 MAX_BUFFER=256
Shark

Shark256

0.09

0.1

0.11

0.12

0.13

0.14

0 200 400 600 800 1000

av
er

ag
e

si
m

ila
rit

y

pages crawled

 MAX_BUFFER=256
Shark

Shark256

Fig. 18. Average target recall (left) and similarity to topic descriptions (right) by representatives

of the BFSN (top) and SharkN (bottom) crawling algorithms, for N = 1 and N = 256.

256). The behavior of the remaining crawlers (BFS16, BFS64 and BFS128) can be
extrapolated between the curves corresponding to BFS1 and BFS256. The same
holds for SharkN crawlers.

In the case of SharkN , it is clear that exploration helps. However the performance
of SharkN crawlers in general is significantly worse than that of BFSN crawlers
after the first 250 pages. Generalized Best-First also paints a more interesting
picture. We observe that the more exploratory algorithm, BFS256, seems to bear
an initial penalty for exploration but recovers in the long run; after about 500 pages
BFS256 catches up, and in the case of recall BFS256 eventually surpasses BFS1.
These results are consistent with the observations from the previous section — the
greediness of BFS1 helps early on but hinders performance in the longer run. It is
also noteworthy that pure (blind) exploration alone is not sufficient to achieve the
best performance. If it were, Breadth-First would be the winner, however Figure 12
shows that Breadth-First is outperformed by BFS. We conclude that a successful
crawling strategy must employ a combination of explorative and exploitative bias,
as is generally the case in any interesting search problem with local optima.

Incidentally, inspection of Figures 12 and 18 reveals that the best overall per-
formance after 1,000 pages crawled in the D = 3 task is achieved by BFS256 with
MAX BUFFER=256 links.

4.2.2 Scalability. Figure 19 plots the performance of BFS1 and BFS256 at 1,000
pages versus frontier size, for MAX BUFFER between 256 and 1,024. No significant
trends are observed; BFSN seems to be unaffected by the frontier size in this range.
ACM Transactions on Internet Technology, Vol. V, No. N, February 2003.

Topical Web Crawlers · 27

0

0.1

0.2

0.3

0.4

0.5

0.6

256 512 1024

av
er

ag
e

re
ca

ll

�

MAX_BUFFER

BFS
BFS256

0.08

0.09

0.1

0.11

0.12

0.13

0.14

256 512 1024

av
er

ag
e

si
m

ila
rit

y

MAX_BUFFER

BFS
BFS256

Fig. 19. Scalability of average

target recall (top) and of simi-

larity to topic descriptions (bot-
tom) with MAX BUFFER by repre-

sentatives of the BFSN crawl-
ing algorithms, for N = 1 and

N = 256.

5. ADAPTIVE CRAWLERS

The Web is a very heterogeneous space. The value of its link and lexical cues
varies greatly depending on the purpose of pages. For example, a researcher’s
homepage might carefully link to pages of colleagues who do related work, while a
commercial site might carefully avoid any pointers to the competition. In fact we
have shown that pages in the .edu domain tend to link to lexically similar pages
with a significantly higher likelihood than pages in the .com domain [Menczer 2002].

One question that arises from this observation, for topical crawlers, is whether
crawling algorithms should take advantage of adaptive techniques to change their
behavior based on their experiential context — if I am looking for “rock climbing”
pages and the term “rock” has often misled me into following links about music
rather than sports, it might be wise to give more importance to the term “climbing”
than to “rock” in the future. In our previous research we have shown that this type
of spatial and temporal context can be exploited by individual and population-based
adaptive crawling algorithms [Menczer and Belew 2000], but those experiments
were limited to relatively small and well-organized portions of the Web such as the
Encyclopaedia Britannica Online.7

7http://www.eb.com

ACM Transactions on Internet Technology, Vol. V, No. N, February 2003.

28 · Filippo Menczer et al.

5.1 Crawler Description

In this section we study whether the noisy Web “at large” provides crawlers with
signals that can be internalized to improve crawling performance in the course of a
crawl. Such signals would have to be reliable enough to help, rather than hinder an
agent’s capability to focus its search. The InfoSpiders crawling algorithm described
in Section 3.1.5 was designed principally to explore this question, therefore there
are a number of adaptive mechanisms built into InfoSpiders.

At the individual level, an agent’s neural network weights can be adjusted by
reinforcement so that an agent may learn to predict the value of links. In the
example above, the weight from the unit associated with the term “climbing” should
be made larger relative to the weight associated with the term “rock.” This would
happen if an agent followed some links highly rated by the neural net because of
their proximity with “rock,” only to find that the pages pointed by those links had
a small similarity with the topic “rock climbing.” The algorithm uses the error
in similarity prediction as a reinforcement signal to train the neural network into
making more accurate link evaluations. To study the effect of individual learning on
crawling performance, we consider variations of the InfoSpiders algorithm in which
learning is disabled and all neural networks are frozen at their initial configurations,
with identical weights.

At the population level, there are two adaptive mechanisms in InfoSpiders.
Through selective reproduction, the search is biased to favor the portions of the
Web that appear more promising. If an agent encounters several pages with high
similarity to its topic keywords, that may be an indication that its frontier contains
higher quality links than other agents. Agents can locally internalize this informa-
tion by creating offspring when their energy surpasses the reproduction threshold.
This in practice doubles the frequency with which the links of the parent agent are
going to be jointly explored by the parent and offspring agents. Since for fairness
the collective frontier of the population as a whole must be maintained within the
MAX BUFFER boundary, at reproduction the local frontier (and its size) is split be-
tween parent and offspring. This implies a cost for such an adaptive bias; as the
crawling algorithm becomes more distributed, local link estimates will be based on
smaller frontiers and thus more subject to local fluctuations. The MAX POP SIZE
parameter determines the maximum degree of distributedness of the algorithm.
We explore values of 8 and 1 here to study the tradeoff in performance between a
distributed crawling strategy with evolutionary bias and a centralized one.

The second adaptive mechanism stemming from InfoSpiders’ evolutionary bias is
a selective expansion of the topic keywords. At reproduction, the offspring agent
picks up a new term from the page where the parent is currently “situated.” Recall
that each agent maintains a biased random walk through the pages it visits, so that
with high probability its “current location” is a page with high similarity to its
topic keywords (cf. Figure 10 and Equation 7). The offspring thus can potentially
improve on its crawling performance by internalizing a new lexical feature that
appears positively correlated with relevance estimates. The risk, of course, is to
add noise by paying attention to a term that in reality is not a good indicator of
relevance. Selective expansion of topic keywords is disabled when the MAX POP SIZE
parameter is set to 1.
ACM Transactions on Internet Technology, Vol. V, No. N, February 2003.

Topical Web Crawlers · 29

5.2 Experimental Results

Here we compare four variations of InfoSpiders crawlers — with and without rein-
forcement learning enabled at the individual level, and with and without evolution
enabled at the population level. Values between 256 and 2,048 are again explored
for the MAX BUFFER parameter.

5.2.1 Dynamic Performance. Figure 20 shows the dynamic performance plots
of the four InfoSpiders variations. Few differences are significant but we can still
observe some general trends. When the frontier is small (MAX BUFFER=256) both
evolution and learning seem to hinder target recall. The problem with evolution
is understandable since with a small frontier, each agent has a very small set of
links to work with and thus the risk to make poor decisions increases with the
decentralization of the link selection process. Evolution does not seem to hinder
(nor help) similarity to topic descriptions; there are probably more pages similar to
the target descriptions than targets, so missing a target does not necessarily imply
missing other possibly relevant pages.

The negative impact of learning on performance for small frontier is less clear
and deserves further analysis. Figure 21 plots the errors made by an InfoSpiders
agent (MAX POP SIZE=1) in estimating the similarity of the pages pointed by the
links that are actually followed. The plot shows both the error of the neural net
(used for training) and the error of the actual estimates used to pick the links,
obtained by combining the neural net output with the similarity of the parent
page (cf. Section 3.1.5). While the actual estimates do improve over time, the
neural net’s errors are subject to significant noise, with a sharp initial decrease
followed by an increase after 100-300 pages, followed by a slower decrease. This
data shows that the heterogeneity of the Web can lead an agent astray, especially
after a few hundred pages. The negative effect of learning can thus be interpreted
by considering the risk that spawned agents may not see enough pages to learn an
effective representation.

When the frontier is large (cf. Figure 20, MAX BUFFER=2,048) there is a reversal
for similarity to topic descriptions; the dominant factor seems to be evolution while
learning does not appear to have an effect. The fact that evolution helps here can be
explain by considering that a large frontier allows each agent to retain an adequate
number (2, 048/8 = 256) of links to pick from. Thus decentralizing the search is
less risky and the crawler can take advantage of the positive effects of evolution,
namely biasing the search toward promising areas and selective keyword expansion.

Incidentally, inspection of Figures 12, 18 and 20 reveals that InfoSpiders (with no
evolution and no learning) competes head-to-head with BFS256 for the best overall
performance after 1,000 pages crawled in the D = 3 task with MAX BUFFER=256
links. While we are pleased to have introduced the two best-performing crawlers, we
find it somewhat disappointing that the adaptive capabilities of InfoSpiders appear
to do more harm than good in these short crawls with very limited resources.

5.2.2 Scalability. The plots in Figure 22 show that performance in all of the In-
foSpiders variants does not scale very well with the frontier size. Again this negative
trend will be discussed in Section 7. However, few of the differences between per-
formance of variants (at 1,000 pages) are significant. As was observed in Figure 20,

ACM Transactions on Internet Technology, Vol. V, No. N, February 2003.

30 · Filippo Menczer et al.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 200 400 600 800 1000

av
er

ag
e

re
ca

ll

�

pages crawled

 MAX_BUFFER=256
IS no evolution, no learning

IS no evolution, learning
IS evolution, no learning

IS evolution, learning

0.095

0.1

0.105

0.11

0.115

0.12

0.125

0.13

0.135

0.14

0 200 400 600 800 1000

av
er

ag
e

si
m

ila
rit

y

pages crawled

 MAX_BUFFER=256
IS no evolution, no learning

IS no evolution, learning
IS evolution, no learning

IS evolution, learning

0

0.1

0.2

0.3

0.4

0.5

0.6

0 200 400 600 800 1000

av
er

ag
e

re
ca

ll

�

pages crawled

 MAX_BUFFER=512
IS no evolution, no learning

IS no evolution, learning
IS evolution, no learning

IS evolution, learning

0.095

0.1

0.105

0.11

0.115

0.12

0.125

0.13

0.135

0.14

0 200 400 600 800 1000

av
er

ag
e

si
m

ila
rit

y

pages crawled

 MAX_BUFFER=512
IS no evolution, no learning

IS no evolution, learning
IS evolution, no learning

IS evolution, learning

0

0.1

0.2

0.3

0.4

0.5

0.6

0 200 400 600 800 1000

av
er

ag
e

re
ca

ll

�

pages crawled

 MAX_BUFFER=1024
IS no evolution, no learning

IS no evolution, learning
IS evolution, no learning

IS evolution, learning

0.095

0.1

0.105

0.11

0.115

0.12

0.125

0.13

0.135

0.14

0 200 400 600 800 1000

av
er

ag
e

si
m

ila
rit

y

pages crawled

 MAX_BUFFER=1024
IS no evolution, no learning

IS no evolution, learning
IS evolution, no learning

IS evolution, learning

0

0.1

0.2

0.3

0.4

0.5

0.6

0 200 400 600 800 1000

av
er

ag
e

re
ca

ll

�

pages crawled

 MAX_BUFFER=2048
IS no evolution, no learning

IS no evolution, learning
IS evolution, no learning

IS evolution, learning

0.095

0.1

0.105

0.11

0.115

0.12

0.125

0.13

0.135

0.14

0 200 400 600 800 1000

av
er

ag
e

si
m

ila
rit

y

pages crawled

 MAX_BUFFER=2048
IS no evolution, no learning

IS no evolution, learning
IS evolution, no learning

IS evolution, learning

Fig. 20. Average target recall (left) and similarity to topic descriptions (right) by the four variants
of InfoSpiders crawlers. The plots in each row correspond to a different value of MAX BUFFER.

ACM Transactions on Internet Technology, Vol. V, No. N, February 2003.

Topical Web Crawlers · 31

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 100 200 300 400 500 600 700 800 900

m
ea

n
sq

ua
re

d
er

ro
r

pages crawled

MAX_BUFFER=256
alpha-averaged estimate

neural net estimate

Fig. 21. Link estimate error of

a single InfoSpiders agent, aver-
aged across 8 topics.

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

256 512 1024 2048

av
er

ag
e

re
ca

ll

�

MAX_BUFFER

IS no evolution, no learning
IS no evolution, learning
IS evolution, no learning

IS evolution, learning

0.095

0.1

0.105

0.11

0.115

0.12

0.125

0.13

256 512 1024 2048

av
er

ag
e

si
m

ila
rit

y

MAX_BUFFER

IS no evolution, no learning
IS no evolution, learning
IS evolution, no learning

IS evolution, learning

Fig. 22. Scalability of aver-
age target recall (top) and of
similarity to topic descriptions

(bottom) with MAX BUFFER by
the four variants of InfoSpiders
crawlers.

the largest spread is observed for small frontier size (MAX BUFFER=256), where both
learning and evolution hinder target recall, and learning hinders similarity to topic
descriptions as well.

5.2.3 Efficiency. The complexity plot in Figure 23 reveals some interesting re-
sults. As expected, learning increases the complexity of the crawler since it requires
extra time to train the neural nets. But evolution decreases the complexity, and

ACM Transactions on Internet Technology, Vol. V, No. N, February 2003.

32 · Filippo Menczer et al.

Fig. 23. Scalability of time
complexity (top) and perfor-
mance/cost ratio (bottom) with
MAX BUFFER by the four variants

of InfoSpiders crawlers.

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

256 512 1024 2048

re
la

tiv
e

co
st

MAX_BUFFER

IS no evolution, no learning
IS no evolution, learning
IS evolution, no learning

IS evolution, learning

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

256 512 1024 2048

pe
rf

or
m

an
ce

/c
os

t

�

MAX_BUFFER

IS no evolution, no learning
IS no evolution, learning
IS evolution, no learning

IS evolution, learning

more so for larger frontier size as we have also seen in Figure 15. The increased
efficiency of evolution stems from the fact that the distributed algorithm divides
the problem into simpler ones, each tackled by an independent agent. The agent
population cumulatively has a simpler job than a centralized agent. In the absence
of evolution, complexity increases with MAX BUFFER as there is more work to do in
order to centrally manage a larger frontier of links. But in the presence of evolution
the trend is reversed to the point that for MAX BUFFER=1,024 the extra advantage
of evolution counterbalances the extra cost of learning. We interpret the trend by
imagining that the population size grows faster as a larger frontier must trigger
earlier reproduction events.

The performance/cost plot in Figure 23 closely follows the relative cost of the
algorithms since the differences in performance are not significant. The data from
these short crawls suggest that InfoSpiders should use evolution but not learning.

6. LONG CRAWLS

All the crawls considered thus far are very short, visiting 1,000 pages. This is
appropriate in certain circumstances, e.g. while the user is waiting [Pant and
Menczer 2002]. However, the behavior of the crawling algorithms might turn out
to be quite different upon crawling a much larger number of pages. To explore this
question, in this section we briefly consider somewhat longer crawls of 50,000 pages.
ACM Transactions on Internet Technology, Vol. V, No. N, February 2003.

Topical Web Crawlers · 33

6.1 Crawler Descriptions

We select a few representative crawlers among those described in this paper to
see if their relative performance qualitatively changes as more pages are crawled.
The naive BFS256 crawler is an obvious candidate because it displays one of the
best performances. InfoSpiders without learning is also a strong performer in short
crawls, however we are more interested in studying whether learning might turn
out to be helpful in the longer run so we select the “normal” InfoSpiders with both
evolution and learning. Finally, Breadth-First is selected as usual to provide a
baseline. Note that in the theoretical limit for very long crawls (MAX PAGES →∞)
one might expect all crawlers to converge (σ → 0 and hopefully ρ → 1). The
question is how fast this happens for each crawler. The best crawler is the one such
that σ converges slowest and ρ converges to the highest level. Breadth-First is a
helpful baseline because it provides a lower bound for σ.

6.2 Experimental Results

We ran 50,000-page crawls for BFS256, InfoSpiders and Breadth-First for 10 topics,
with MAX BUFFER=2,048 links. Note that the number of topics is limited by the time
required to run these longer crawls.

Figure 24 shows the dynamic performance of the three crawlers in the longer
crawls. The error bars can be quite large owing to the small number of topics. As
expected, Breadth-First is significantly outperformed by both BFS256 and InfoS-
piders for both target recall and similarity to topic descriptions.

For target recall BFS256 initially beats InfoSpiders (consistently with the results
from shorter crawls), but eventually after 7,500 pages InfoSpiders surpasses BFS256,
with the difference becoming significant after 20,000 pages. Note that all the three
crawlers seem to have converged after about 20,000 pages, therefore we do not
expect to learn much more from running even longer crawls. The final recall level
of almost 70% of the targets achieved by InfoSpiders seems like a pretty good result
considering the difficulty of the D = 3 task.

For similarity to topic descriptions the differences between BFS256 and InfoSpi-
ders are not significant, however the trends paint a very similar picture. BFS256
performs better than InfoSpiders in the early phase of the crawl, while InfoSpiders
eventually catches up by staying more focused. These results suggest that while the
adaptive mechanisms of InfoSpiders may not be helpful (or may even be harmful)
in very short crawls, they confer a winning advantage after the agents have had
a chance to internalize important features about the environment. Such features
allow the agents to discover relevant pages long after static crawlers have lost their
focus.

7. CONCLUDING REMARKS

We believe that the crawling algorithms discussed in this paper are a good sample
of the current state of the art. Of course there are many other algorithms that are
not considered here due to timeliness, insufficient information available, or our own
ignorance. Even for the most sophisticated crawlers described in the literature it is
impossible to gauge their effectiveness in isolation, without fair comparative studies
using well defined common tasks, performance measures, and equal resources. It is

ACM Transactions on Internet Technology, Vol. V, No. N, February 2003.

34 · Filippo Menczer et al.

Fig. 24. Average target recall
(top) and similarity to topic de-
scriptions (bottom) by BFS256,
InfoSpiders and Breadth-First

over ten 50,000 page crawls.

0

0.2

0.4

0.6

0.8

1

0 10000 20000 30000 40000 50000

av
er

ag
e

re
ca

ll

�

pages crawled

 MAX_BUFFER=2048
BreadthFirst

IS
BFS256

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 10000 20000 30000 40000 50000

av
er

ag
e

si
m

ila
rit

y

pages crawled

 MAX_BUFFER=2048
BreadthFirst

IS
BFS256

our hope that by describing the state of the art in topical crawlers within a unified
evaluation framework, one can foster further studies that will lead to improved
crawling algorithms and ultimately better search tools for the public at large.

Let us conclude by summarizing the main contributions of this paper, discussing
our results, and outlining some directions for future work.

7.1 Summary

The major contributions of the present work are summarized as follows:

— Two novel crawling algorithms, BFS256 and InfoSpiders, have been intro-
duced by generalizing or improving on previous algorithms. Based on our evalua-
tion metrics, and to the best of our knowledge, these crawlers are currently the best
performers at difficult crawling tasks such as the one in which seed URLs are D = 3
links away from known relevant targets. Recall levels above 60% are achieved by
InfoSpiders after around 10,000 pages.

— A number of crawlers from the literature have been reimplemented and eval-
uated under fair conditions. Their relative effectiveness has been shown to be
consistent across different performance metrics and space (memory) resources.

— The naive Best-First algorithm has been shown to be an effective crawler,
especially in the short run. For very short crawls it is best to be greedy; this is a
ACM Transactions on Internet Technology, Vol. V, No. N, February 2003.

Topical Web Crawlers · 35

lesson that should be incorporated into algorithms for query time (online) crawlers
such as MySpiders8 [Pant and Menczer 2002].

— We have shown consistently that exploration leads to better coverage of highly
relevant pages, in spite of a possible penalty during the early stage of the crawl. This
suggests that exploration allows to tradeoff short term gains for longer term and
potentially larger gains. However, we also found that a blind exploration leads to
poor results, demonstrating that a mix of exploration and exploitation is necessary
for good overall performance.

— Our study of adaptive crawlers has demonstrated that machine learning tech-
niques making use of local information alone can confer a significant advantage in
performance after sufficiently long crawls. However, while InfoSpiders is a very
competitive crawler in general, we have shown that reinforcement learning does not
provide for a sufficiently strong advantage in predicting the value of links to offset
the increased cost and the risk of additional mistakes during the initial training
phase.

— We have analyzed the time complexity of crawlers and found that distributed
algorithms such as InfoSpiders can be extremely efficient and scalable, improving
for large amounts of available resources to the point of being no more expensive
that a blind algorithm such as Breadth-First. InfoSpiders thus achieves the best
performance/cost ratio. Greedy algorithms such as Best-First, on the other hand,
require a large amount of time to sort through candidate links and are less scalable.

7.2 Discussion

We find it somewhat disappointing that adaptation does not yield a greater advan-
tage in performance, and that reinforcement learning in particular seems to hinder
performance in short crawls. Clearly the Web is a very noisy environment and mis-
takes can be costly for tasks such as D = 3. It would be interesting to repeat the
experiment with adaptive crawlers on simpler tasks such as D = 0, 1, 2. Another
factor to consider is that there are several parameters in InfoSpiders, which have
been tuned preliminarily but not extensively and not in the D = 3 task. Tuning
some of those parameters, for example the learning rate for training the neural nets
or the greediness parameter β, might prove beneficial.

We observed InfoSpiders becoming more efficient for large frontier sizes, but
their performance parallelly worsening. This phenomenon deserves further study.
Our current theory is that a larger frontier may lead to earlier reproduction, thus
explaining the gain in efficiency. Such early reproduction might be seen as a sort
of “premature bias,” or suboptimal exploitation of early evidence that leads to
missing other good pages later. In this sense a better understanding of optimal
reproduction frequencies should be obtained by further tuning the reproduction
threshold parameter (THETA). Of course one must also consider that the simple
growth of the frontier implies an inherent increase in noise with which crawlers
may have a hard time coping.

The present analysis is based on a small number of evaluation metrics selected for
the particular task discussed in this paper. Many other measures could of course

8http://myspiders.biz.uiowa.edu

ACM Transactions on Internet Technology, Vol. V, No. N, February 2003.

36 · Filippo Menczer et al.

be used. Furthermore, all the analyses in this paper are based on averages across
topics. Much can be learned by taking a different approach, namely studying
diverse characteristics of each topic and then observing whether certain topical
features are associated with particularly good (or poor) performance by any given
crawler. These are issues that we discuss in a companion paper focusing on the
evaluation aspects of crawlers [Srinivasan et al. 2002].

In this study we have devoted significant resources to obtain statistically signif-
icant results when possible by analyzing data across many topics. This, together
with the large number of experiments and crawlers, and given obvious limitations in
hardware, bandwidth and time, severely constrained the length of the crawls that
could be carried out. Longer crawls are of course always desirable, especially when
considering applications such as in support of topical portals [Pant et al. 2003].
However it must be stressed that it takes many topics (or at least random repli-
cates) to obtain reliable results and that such reliability is key to understanding
the behavior of topical crawlers in such a complex environment as the Web.

ACKNOWLEDGMENTS

We are grateful to Soumen Chakrabarti, Steve Lawrence, Rik Belew, Nick Street
and Dave Eichmann for helpful comments since the early stages of this project,
to several anonymous reviewers for constructive criticism and suggestions, and to
Alberto Segre and Dave Eichmann for computing support.

REFERENCES

Aggarwal, C., Al-Garawi, F., and Yu, P. 2001. Intelligent crawling on the World Wide Web

with arbitrary predicates. In Proc. 10th International World Wide Web Conference. 96–105.

Ben-Shaul, I. et al. 1999. Adding support for dynamic and focused search with Fetuccino.

Computer Networks 31, 11–16, 1653–1665.

Brewington, B. E. and Cybenko, G. 2000. How dynamic is the Web? In Proc. 9th International
World-Wide Web Conference.

Brin, S. and Page, L. 1998. The anatomy of a large-scale hypertextual Web search engine.

Computer Networks 30, 1–7, 107–117.

Chakrabarti, S., van den Berg, M., and Dom, B. 1999. Focused crawling: A new approach to

topic-specific Web resource discovery. Computer Networks 31, 11–16, 1623–1640.

Cho, J. and Garcia-Molina, H. 2000. The evolution of the Web and implications for an incre-
mental crawler. In Proceedings of the 26th International Conference on Very Large Databases

(VLDB).

Cho, J., Garcia-Molina, H., and Page, L. 1998. Efficient crawling through URL ordering.
Computer Networks 30, 1–7, 161–172.

Cyveillance. 2000. Sizing the internet. White paper. http://www.cyveillance.com/.

De Bra, P. and Post, R. 1994. Information retrieval in the World Wide Web: Making client-
based searching feasible. In Proc. 1st International World Wide Web Conference (Geneva).

Diligenti, M., Coetzee, F., Lawrence, S., Giles, C. L., and Gori, M. 2000. Focused crawling

using context graphs. In Proc. 26th International Conference on Very Large Databases (VLDB
2000). Cairo, Egypt, 527–534.

Flake, G., Lawrence, S., Giles, C., and Coetzee, F. 2002. Self-organization of the Web and
identification of communities. IEEE Computer 35, 3, 66–71.

Gibson, D., Kleinberg, J., and Raghavan, P. 1998. Inferring Web communities from link

topology. In Proc. 9th ACM Conference on Hypertext and Hypermedia. 225–234.

Haveliwala, T. 1999. Efficient computation of pagerank. Tech. rep., Stanford Database Group.

ACM Transactions on Internet Technology, Vol. V, No. N, February 2003.

Topical Web Crawlers · 37

Henzinger, M., Heydon, A., Mitzenmacher, M., and Najork, M. 1999. Measuring search

engine quality using random walks on the Web. In Proc. 8th International World Wide Web

Conference (Toronto). 213–225.

Hersovici, M., Jacovi, M., Maarek, Y. S., Pelleg, D., Shtalhaim, M., and Ur, S. 1998.

The shark-search algorithm — An application: Tailored Web site mapping. In Proc. 7th Intl.
World-Wide Web Conference.

Kleinberg, J. 1999. Authoritative sources in a hyperlinked environment. Journal of the
ACM 46, 5, 604–632.

Kleinberg, J. and Lawrence, S. 2001. The structure of the Web. Science 294, 5548, 1849–1850.

Kumar, S., Raghavan, P., Rajagopalan, S., Sivakumar, D., Tomkins, A., and Upfal, E. 2000.
Stochastic models for the Web graph. In Proc. 41st Annual IEEE Symposium on Foundations
of Computer Science. IEEE Computer Society Press, Silver Spring, MD, 57–65.

Kumar, S., Raghavan, P., Rajagopalan, S., and Tomkins, A. 1999. Trawling the Web for
emerging cyber-communities. Computer Networks 31, 11–16, 1481–1493.

Lawrence, S. and Giles, C. 1998. Searching the World Wide Web. Science 280, 98–100.

Lawrence, S. and Giles, C. 1999. Accessibility of information on the Web. Nature 400, 107–109.

McCallum, A., Nigam, K., Rennie, J., and Seymore, K. 1999. A machine learning approach to

building domain-specific search engines. In Proc. 16th International Joint Conf. on Artificial
Intelligence. Morgan Kaufmann, San Francisco, CA, 662–667.

Menczer, F. 1997. ARACHNID: Adaptive Retrieval Agents Choosing Heuristic Neighborhoods

for Information Discovery. In Proc. 14th International Conference on Machine Learning. 227–
235.

Menczer, F. 2002. Lexical and semantic clustering by Web links. JASIST (Submit-
ted). Shorter version available as Computing Research Repository (CoRR) Technical Report

arXiv.org:cs.IR/0108004.

Menczer, F. 2003. Complementing search engines with online Web mining agents. Decision

Support Systems 35, 2, 195–212.

Menczer, F. and Belew, R. 1998. Adaptive information agents in distributed textual envi-

ronments. In Proc. 2nd International Conference on Autonomous Agents. Minneapolis, MN,
157–164.

Menczer, F. and Belew, R. 2000. Adaptive retrieval agents: Internalizing local context and
scaling up to the Web. Machine Learning 39, 2–3, 203–242.

Menczer, F. and Monge, A. 1999. Scalable Web search by adaptive online agents: An InfoS-
piders case study. In Intelligent Information Agents: Agent-Based Information Discovery and

Management on the Internet, M. Klusch, Ed. Springer, Berlin, 323–347.

Menczer, F., Pant, G., Ruiz, M., and Srinivasan, P. 2001. Evaluating topic-driven Web

crawlers. In Proc. 24th Annual Intl. ACM SIGIR Conf. on Research and Development in
Information Retrieval, D. H. Kraft, W. B. Croft, D. J. Harper, and J. Zobel, Eds. ACM Press,

New York, NY, 241–249.

Moukas, A. and Zacharia, G. 1997. Evolving a multi-agent information filtering solution in

Amalthaea. In Proc. 1st International Conference on Autonomous Agents.

Najork, M. and Wiener, J. L. 2001. Breadth-first search crawling yields high-quality pages. In

Proc. 10th International World Wide Web Conference.

Nick, Z. and Themis, P. 2001. Web search using a genetic algorithm. IEEE Internet Comput-

ing 5, 2, 18–26.

O’Meara, T. and Patel, A. 2001. A topic-specific Web robot model based on restless bandits.

IEEE Internet Computing 5, 2, 27–35.

Pant, G., Bradshaw, S., and Menczer, F. 2003. Search engine - crawler symbiosis. In prepa-

ration.

Pant, G. and Menczer, F. 2002. MySpiders: Evolve your own intelligent Web crawlers. Au-

tonomous Agents and Multi-Agent Systems 5, 2, 221–229.

Pant, G. and Menczer, F. 2003. Topical crawling for business intelligence. In preparation.

ACM Transactions on Internet Technology, Vol. V, No. N, February 2003.

38 · Filippo Menczer et al.

Pant, G., Srinivasan, P., and Menczer, F. 2002. Exploration versus exploitation in topic driven

crawlers. In Proc. WWW-02 Workshop on Web Dynamics.

Pinkerton, B. 1994. Finding what people want: Experiences with the WebCrawler. In Proc. 1st

International World Wide Web Conference (Geneva).

Porter, M. 1980. An algorithm for suffix stripping. Program 14, 3, 130–137.

Rennie, J. and McCallum, A. 1999. Using reinforcement learning to spider the Web efficiently.

In Proc. 16th International Conf. on Machine Learning. Morgan Kaufmann, San Francisco,
CA, 335–343.

Rumelhart, D., Hinton, G., and Williams, R. 1986. Learning internal representations by error

propagation. In Parallel Distributed Processing: Explorations in the Microstructure of Cogni-
tion, D. Rumelhart and J. McClelland, Eds. Vol. 1. Bradford Books (MIT Press), Cambridge,

MA, Chapter 8, 318–362.

Srinivasan, P., Pant, G., and Menczer, F. 2002. A general evaluation framework for topical

crawlers. Information Retrieval (Submitted).

Wills, C. and Mikhailov, M. 1999. Towards a better understanding of Web resources and

server responses for improved caching. In Proc. 8th International World Wide Web Conference

(Toronto).

Received May 2002; revised December 2002; accepted February 2003

ACM Transactions on Internet Technology, Vol. V, No. N, February 2003.

