
1

Towards Comprehensive Real-Time Bidder Support

in Iterative Combinatorial Auctions*

Gediminas Adomavicius
gedas@umn.edu

Alok Gupta
agupta@csom.umn.edu

Department of Information and Decision Sciences
Carlson School of Management

University of Minnesota

Abstract

Many auctions involve selling several distinct items simultaneously, where bidders can bid on

the whole or any part of the lot. Such auctions are referred to as combinatorial auctions.

Examples of such auctions include truck delivery routes, furniture, and FCC spectrum.

Determining winners in such auctions is an NP-complete problem and significant research is

being conducted in this area. However, multiple round (iterative) combinatorial auctions present

significant challenges in bid formulations as well. Since the combinatorial dynamics in iterative

auctions can make a given bid a part of winning and non-winning set of bids without any

changes in the bid, bidders are usually not able to evaluate whether they should revise their bid at

a given point in time or not. Therefore, in this paper we address various computational problems

that are relevant from the bidder’s perspective. In particular, we introduce several bid evaluation

metrics that can be used by bidders to determine whether any given bid can be a part of the

winning allocation and explore their theoretical properties. Based on these metrics, we also

develop efficient data structures and algorithms that provide comprehensive information about

the current state of the auction at any time, which can help bidders in evaluating their bids and

bidding strategies. The performance analysis suggests that the proposed approach is suitable for

real-time bidder support.

* Alok Gupta’s research is supported by NSF Career grant #IIS-0301239 but does not necessarily reflect the views
of the NSF. The authors thank the workshop participants at WITS-03, Seattle, and Revolutionary Strategies and
Tactics in Research Design and Data Collection for E-Business Management Research at ICEC-03, Pittsburgh, for
their valuable comments and suggestions.

2

1 Introduction
Online auctions are among the most widely used electronic market mechanisms on the Internet.

In an auction, a seller sells one or several objects (goods) to several potential buyers. In typical

single-object auctions, determining the auction’s winner and its payment is a computationally

tractable problem. In simultaneous auctions of several distinct items, it is often desirable to

allow bids on combinations of items because of complementarities or positive externalities

(Hudson and Sandholm 2002). Such auctions are called combinatorial auctions. It has been

shown that combinatorial auctions can lead to more efficient allocations than traditional auction

mechanisms when buyers’ valuations of the items are dependent on the specific combination of

items they are able to win (Hudson and Sandholm 2002, de Vries and Vohra 2003). However,

the winner determination problem in such auctions is computationally intractable, i.e., NP-

complete (Rothkoph et al. 1998, Sandholm 1999). Therefore, researchers have primarily focused

on the winner determination problem and the previous work can be broadly categorized into: (1)

development of heuristics for solving the general winner determination problem (Sandholm

1999, 2002) and (2) identification of tractable special cases of the winner determination problem

(Rothkoph et al. 1998, Tennenholtz 2000).1

 However, in multi-round (or iterative) open auctions, bidders need to evaluate the

efficacy of their bids. In single-unit iterative auctions (e.g., English auctions), if a bidder is not

the highest bidder, she needs to bid an amount higher than the current highest bid to have a

chance to win the auction. However, in combinatorial auctions this is not necessarily the case.

A bid that is not among the current winner2 can be among the future winners simply based on the

1 The complete coverage of extensive research in these areas is beyond the scope of this paper; de Vries and Vohra
(2003) present an extensive up-to-date bibliography of research in combinatorial auctions.
2 A current winner is defined as a set of bids that would win the allocation of desired items if the auction were to
stop at that point in time.

3

combinations of later bids. For example, if there are 3 items A, B, and C and the current bids

are: (i) $10 for AB; and (ii) $5 for A, the second bid is not current winner. However, if a new

bid of $6 for BC arrives, then, assuming the auctioneer is maximizing his revenue, bid (ii) will be

among the winning bids. Therefore, it is not in the best interest of a bidder to always update

their bids. Unfortunately, due to the complexity of the winner determination problem, bidders in

iterative combinatorial auctions usually do not even know whether their bid is currently winning

or not.

Research in iterative combinatorial auctions has primarily focused on creating specific

mechanisms that either focus on specific application or create rules and restrictions to allow

creation of several well defined rounds of bidding. An example of mechanisms for specific

applications is the BICAP mechanism created by Brewer and Plott (1996) for the rights to use

railroad tracks. Examples of creating specific rules to enable multiround computation of winner

determination include iBundle by Parkes (1999), Ausubel and Milgrom (2002), and Rothkoph et

al. (1998). Other interesting ideas include shifting the onus of bid evaluation on the bidders, for

example Banks, Ledyard, and Porter (1989) create a mechanism in which it is the responsibility

of the bidders to look at the existing bids and submit a new bid that makes the combined

“package” optimal. Other researchers, such as Nisan (2000), provide a bidding language so that

bidders can represent their preferences (bid/item combination) in sealed bid (non iterative)

auctions.

Pekec and Rothkoph (2003) note that the continuous time combinatorial auctions are

difficult to conduct for more than a handful of items. In their opinion, it is preferable to design

mechanisms that identify discrete rounds with specific rules making winner determination

efficient. However, they note that if it is not possible to create discrete rounds then “bidtakers

4

should take particular care in providing tools that help bidders in bid preparation.” Overall, it

is fair to say that the issue of providing comprehensive real-time information to bidders during

the auction has been largely untouched.

 In this paper, we take a different approach and address various computational problems

that are relevant from the bidder’s perspective. We develop novel data structures and algorithms

that provide comprehensive information about the current auction state to bidders in iterative

combinatorial auctions, which can help bidders in evaluating their bids and bidding strategies. In

particular, we introduce several bid evaluation metrics that can be used by bidders to determine

whether any given bid can be a part of the winning allocation and develop computationally fast

algorithms that calculate these metrics. The introduction of these bid evaluation metrics leads to

the following significant results:

• It facilitates access to the crucial bid-related information to the bidders anytime during

the course of an auction as opposed to traditional approaches that only provide final

allocation information;

• Since our algorithms and data structures provide access to the complete state of a

combinatorial auction in real-time, winners can be easily determined incrementally and

are known after each new bid;

• Development of new bid evaluation metrics can offer insights into the underlying

structure of combinatorial auctions and provide novel directions for future research.

The prior research indicates that exhaustive state space-based approach (or complete

enumeration approach) for winner determination in combinatorial auction is only feasible for

cases for less than a dozen items (Sandholm 2002, Pekec and Rothkoph 2003). Moreover, the

computational performance of such algorithms is reported to be unsatisfactory for real-time use

5

(de Vries and Vohra 2003). In this paper, we extend these boundaries to a much larger number

(25-30). We provide theoretical foundations of the interrelationships and tradeoffs among the

exponential number of possible bids. Based on these relationships, we define some important

constructs, such as sub-auctions as well as live and dead bids. We then develop data structures

that support real-time bidder queries and an efficient algorithm for keeping these data structures

up-to-date throughout the duration of an auction. We then use this algorithm to perform

extensive computational experiments to demonstrate the performance of our implementation.

The experimental results indicate that our implementation is capable of providing real-time

bidder support for auction sizes where even a single time winner determination problem is

considered challenging.

2 Combinatorial Auction Dynamics: Theoretical Analysis

2.1 Preliminaries and Definitions

Let I be the set of items to be auctioned, and let N = I . We use the terms auction set and

auction size to refer to I and N, respectively. In a combinatorial auction, participants (person,

software agent, etc.) can place bids on any itemset, i.e., any non-empty subset of I .

An arbitrary bid b can be represented by the tuple (, ,)b S v t= , where S ⊆ I (S ≠ ∅),

v +∈R , and t +∈R . Here S denotes the itemset the bid was placed on, also called the span of the

bid; v denotes the value of the bid (e.g., the monetary amount specified in this bid); and t denotes

the time the bid is placed. Given bid b, we use the notation ()S b , ()v b , and ()t b to refer to the

span, value, and time of the bid, respectively.

We assume that there exists a strict chronological order to bids, i.e., that no two bids

arrive at the exactly same time moment, or more formally, for any two different bids b′ and b′′

6

we always have () ()t b t b′ ′′≠ . Therefore, all bids in an auction can be ordered according to this

order (i.e., 1 2 3, , ,b b b …). This is a natural assumption (commonly accepted in auction literature)

and is used for tie-breaking purposes. For example, if we have two bids with identical spans and

identical values, the earlier bid is typically preferred over the later one.

Because of the existence of the strict chronological order of bids, we can introduce the

notion of the auction states, which are represented by non-negative natural numbers. In

particular, auction state k (where 0,1,2,k = …) refers to the auction after first k bids are

submitted. This bid set is denoted as kB , i.e., 1{ , , }k kB b b= … . Auction state 0 refers to the

auction before any bids are made, i.e., 0B =∅ . Obviously, k lB B⊆ , for any k and l such that

k l≤ .

Given an arbitrary set of bids B in a combinatorial auction, a bid set C (where C B⊆)

is called a bid combination in B if all bids in C have non-overlapping spans, i.e., for every

,b b C′ ′′∈ such that b b′ ′′≠ , we have () ()S b S b′ ′′ = ∅∩ . Let k^ denote the set of all bid

combinations possible at auction state k, or, more formally,

{ }| , , () ()k kC B b b C b b S b S b′ ′′ ′ ′′ ′ ′′= ⊆ ∈ ≠ ⇒ =∅∩C .

We assume that the winners of the auction are determined by maximizing the seller’s

revenue, i.e., max ()
k

b CC
bν

∈∈
∑^

. The bid combination that maximizes this expression is called a

winning bid combination and is denoted as kWIN (for auction state k). Moreover, given auction

state k, bid kb B∈ is called a winning bid in kB if kb WIN∈ . Furthermore, if bid kb B∈ is not a

winning bid in kB and cannot possibly be a winning bid in any subsequent auction state then b is

called a dead bid in kB . Formally, bid kb B∈ is dead if ()()l k lB B b WIN∀ ⊇ ∉ . The set of all

7

dead bids in kB is denoted as kDEAD . On the other hand, if kb DEAD∉ then bid kb B∈ is

called a live bid in kB . The set of all live bids in kB is denoted as kLIVE . Based on the

definitions of kWIN , kDEAD and kLIVE , note that: k kDEAD LIVE =∅∩ ,

k k kDEAD LIVE B=∪ , k kWIN LIVE⊆ , and 1k kDEAD DEAD +⊆ .

In order to determine the winning bid combination, we need to establish a preference

order on various bid combinations. Note that, since a bid combination is a set of bids with non-

overlapping spans, we can straightforwardly extend span, value, and time notions from bids to

bid combinations as follows. Let C be a bid combination. Then ()S C , ()v C , and ()t C are

defined as follows:

() ()
b C

S C S b
∈

=∪ , () ()
b C

v C v b
∈

=∑ , and () max ()
b C

t C t b
∈

= .

Also, for the purpose of notational completeness, we define the span, value, and time of an

empty bid combination ∅ as follows: ()S ∅ =∅ , () 0v ∅ = , and () 0t ∅ = .

To incorporate a strict tie-breaking mechanism into the winner determination process, we

will define a strict total order for sets of bid combinations by defining a ≺ relation on bid

combinations. In other words, given an arbitrary set of bid combinations C , for any ,C C′ ′′∈C

such that C C′ ′′≠ we will always have that either C C′ ′′≺ (in this case, we will say that C′′ is

better than C′) or C C′′ ′≺ (i.e., C′ is better than C′′). According to the revenue maximization

requirement which combinatorial auctions typically follow, relation ≺ must have the following

“value monotonicity” property: ()(), () ()kC C C C C C Cν ν′ ′′ ′ ′′ ′ ′′∀ ∈ ⇒ ≤≺ . In other words, C′′

cannot be better than C′ if C′′ provides less value than C′ . Therefore, the above property

guarantees that the best bid combination will always be the one with the maximal revenue.

However, this property alone is not sufficient for relation ≺ to be a strict total order, because a

8

combinatorial auction can have several bid combinations with the (same) maximal revenue.

Therefore, in addition to the above value monotonicity property, relation ≺ must have a tie-

breaking mechanism to be able to order bid combinations with equal values. The following

example illustrates the importance of the tie-breaking mechanism.

Example 1. Consider a 4-item auction, i.e., { , , , }a b c d=I . Furthermore, assume that the
following 4 bids were made in the exact chronological sequence shown here:

1 (,15)b ab= , 2 (,10)b bc= , 3 (,10)b ad= , 4 (,5)b cd= .
The maximal possible value of a bid combination in the above example is 20, and we have two
bid combinations, i.e., {b1, b4} and {b2, b3}, that have such value. Which one should be picked
as a winning combination? If each of these bid combinations consisted of a single bid then we
could straightforwardly break the tie by choosing the earlier bid. However, bid combinations
{b1, b4} and {b2, b3} are not straightforwardly comparable in terms of time. E.g., combination
{b1, b4} started earlier than {b2, b3} (because of b1), but {b2, b3} ended earlier than {b1, b4}
(because of b4).

While several different tie-breaking mechanisms for relation ≺ are possible, because of

the space limitations we consider one specific tie-breaking approach in this paper.3 In this

approach, if there are several bid combinations with equal value, the earliest bid combination is

chosen over the later ones. Justification for this is straightforward: we do not want to change the

winning bid combination as long as the auction revenue does not increase. Formally, we will

state that C′′ is better than C′ (i.e., C C′ ′′≺), if either of the following two conditions is true:

(i) () ()v C v C′ ′′< ; or

(ii) () ()v C v C′ ′′= , and (\) (\)t C C t C C′ ′′ ′′ ′> .

Note that, here we use (\) (\)t C C t C C′ ′′ ′′ ′> instead of the simpler () ()t C t C′ ′′> condition in

order to eliminate the “overlap” between the bid combinations, i.e., we eliminate bids that are

present in both C′ and C′′ . Based on the fact that (\) (\)C C C C′ ′′ ′′ ′ = ∅∩ and that there exists a

strict chronological order of individual bids, we always have that (\) (\)t C C t C C′ ′′ ′′ ′≠ . This

3 Most of the theoretical results presented in this paper also hold for other strict total order relations ≺ that have the
value monotonicity property.

9

makes condition (ii) a true tie-breaker, since it is not possible to have (\) (\)t C C t C C′ ′′ ′′ ′= when

C C′ ′′≠ . Furthermore, it is straightforward to show formally that ≺ is truly a strict total order,

i.e., that it is irreflexive (i.e., C C≺ is not true for any C), transitive (C C′ ′′≺ and C C′′ ′′′≺

implies C C′ ′′′≺), and total (as was demonstrated earlier in this paragraph).

Example 2. Using the above definition of strict total order on bid combinations, the winning bid
combination in Example 1 would be {b2, b3}. In other words, we have that {b2, b3}

1 4 2 3{ , } { , }b b b b≺ , because () ()1 4 2 3{ , } { , }v b b v b b= , but:

() () () ()1 4 2 3 1 4 4 3 2 3 2 3 1 4{ , } \{ , } { , } () () { , } { , } \{ , }t b b b b t b b t b t b t b b t b b b b= = > = = .

Once the strict total order is defined on bid combinations, we can rewrite the winner

determination problem simply as: maxk kWIN = ≺C . With the strict total order on bid

combinations in place, we can now derive a multitude of results about various aspects of

combinatorial auctions.

2.2 Sub-auctions and Their Winning Bid Combinations

Since we want to be able to provide a bidder the information regarding the auction at every

instant, we need to know the currently winning bids at each stage of the auction. For

representational simplicity we do this by defining the concept of sub-auction: given auction state

k and itemset X, define []kB X as { }[] | ()k kB X b B S b X= ∈ ⊆ . We can then say that each

itemset X (X ⊆ I) defines a sub-auction of the overall auction I .

Furthermore, given auction state k and itemset X, []k XC denotes the set of all bid

combinations in []kB X , i.e., { }[] [] | , , () ()k kX C B X b b C b b S b S b′ ′′ ′ ′′ ′ ′′= ⊆ ∈ ≠ ⇒ =∅∩C . Note

that, by definition, []k kB B≡ I and []k k≡^ ^ I . The following table states three intuitive

properties of []kB X and []k XC that follow immediately from their definitions. In other words,

for any non-empty itemsets X, Y and any auction state k, all the statements in Table 1 are true.

10

Description Properties of []kB X Properties of []k XC
Monotonicity
w.r.t. auction state 1[] []k kB X B X+⊆ 1[] []k kX X+⊆C C

Monotonicity
w.r.t. sub-auction () ()[] []k kX Y B X B Y⊆ ⇒ ⊆ () ()[] []k kX Y X Y⊆ ⇒ ⊆C C

“Superadditivity”
w.r.t. sub-auction

[] [] []k k kB X Y B X B Y⊇∪ ∪ [] [] []k k kX Y X Y⊇∪ ∪C C C

Table 1. Various properties of []kB X and []k XC .

Given the strict total order on bid combinations, the winner determination problem for

each sub-auction is formulated as: [] max []k kWIN X X= ≺ C , where []kWIN X represents the

winning bid combination for sub-auction X at auction state k. Note that, by definition,

 []k kWIN WIN≡ I at each stage k (1,2,k = …). Again, for the purpose of notational

completeness we define []kWIN ∅ =∅ .

To be able to keep track of winning bids at each state of the auction, one of the important

issues is to understand the iterative dynamics of winning bid combinations, i.e., how the current

winning bid combination changes when the new bid is submitted to the auction. Suppose that we

are at auction state k (i.e., k bids have been submitted so far) and a new bid 1kb + is placed. The

following two theorems explain the dynamics of the winning bid combination for each sub-

auction X, i.e., the relationship between []kWIN X and 1[]kWIN X+ for each sub-auction X.

Theorem 1 ()()1 1() [] []k k kX S b WIN X WIN X+ +∀ =| .4

Theorem 2 () [] [] { } []()1 1 1 1() max , \ ()k k k k k kX S b WIN X WIN X b WIN X S b+ + + + ∀ =  ≺ ∪⊇ .

Simply put, Theorem 1 says that for all sub-auctions X that 1kb + does not belong to (i.e.,

1()kS b X+ { or, in other words, 1 1[]k kb B X+ +∉), the winning bid combination does not change.

4 Proofs of all theoretical results are provided in the appendix.

11

Theorem 2 indicates that for all sub-auctions X that 1kb + does belong to, the winning bid

combination of sub-auction X can change only if the combination of new bid 1kb + and the

winning bids in the 1\ ()kX S b + sub-auction is better than the previous winning bid combination

of sub-auction X. Note that, for the special case where 1()kX S b += Theorem 2 is simplified to

[] []1 1max [],{ }k k kWIN X WIN X b+ += ≺ , because []kWIN ∅ =∅ .

 Let ()kVL X be the value level of sub-auction X at auction state k or, more formally,

()() []k kVL X v WIN X= . In other words, ()kVL X represents the maximal possible revenue from

sub-auction X at auction state k. Note that the revenue of the entire auction is then denoted as

()kVL I . Based on the definition of ()kVL X , we can derive various properties of ()kVL X , as

stated in the following lemma.

Lemma 1 For any auction state k and itemsets X, Y, the following statements are true:

1. 1() ()k kVL X VL X+≤ ;
2. () ()() ()k kX Y VL X VL Y⊆ ⇒ ≤ ;

3. () ()() () ()k k kX Y VL X VL Y VL X Y=∅ ⇒ + ≤∩ ∪ .

In other words, ()kVL X (or the revenue of sub-auction X at auction state k) is monotonically

non-decreasing with respect to both auction state k and sub-auction X. It is also superadditive

with respect to the sub-auction – the cumulative revenue from two non-overlapping sub-auctions

cannot be greater than the revenue of the combined sub-auction.

2.3 “Deadness” and “Winning” Levels of Bids and Their Theoretical Properties

In this section we derive several theoretical results about dead, live, and winning bids, including

the necessary and sufficient conditions for determining whether a given bid is dead, live, or

winning at each state of a combinatorial auction. We begin with the following theorem that

12

identifies an important correspondence between the live bids of the auction and the winning

combinations of individual sub-auctions.

Theorem 3 Given auction state k and bid kb B∈ , such that ()S b X= , we have:

kb LIVE∈ ⇔ []kb WIN X∈ .

The above theorem states that bid b is live at auction state k if and only if b is a winning bid in a

sub-auction defined by its span ()S b at auction state k. Furthermore, since []kb WIN X∈ and

()X S b= , the winning combination of sub-auction X consists of bid b alone, i.e., kb LIVE∈ ⇔

[()] { }kWIN S b b= . Therefore, as the next corollary indicates, the set of live bids in a

combinatorial auction is comprised of the winning bids from all sub-auctions.

Corollary 3a []k kX
LIVE WIN X

⊆
=∪ I

.

In other words, at any auction state, the set of all live bids in an auction is the same as the set of

winning bids from all sub-auctions. Furthermore, from the bidder’s perspective it would be

useful to know how much she should bid on an itemset to guarantee that her bid is live. The next

theoretical result addresses this issue, i.e., given auction state k and a newly submitted bid 1kb + ,

the following corollary (based on Theorem 3) states the necessary and sufficient condition for the

deadness of 1kb + .

Corollary 3b Given auction state k and new bid 1kb + , such that 1()kS b X+ = , the following is
true: 1 1k kb DEAD+ +∈ ⇔ 1() ()k kv b VL X+ ≤ .

Simply put, any new bid on itemset X will be dead if and only if the current winning combination

of sub-auction X has the same or greater value than the value of the new bid. Therefore, while

()kVL X was introduced to denote the value of sub-auction X at auction state k, it also represents

the “deadness level” for any new bids on itemset X at auction state k. Thus, we will also call

13

()kVL X the deadness level of itemset X at auction state k and will denote it as ()kDL X . More

precisely, for any auction state k and itemset X we have: () ()k kDL X VL X= . Note that, the

above corollary can be straightforwardly formulated as the necessary and sufficient condition for

“liveness” of the new bid 1kb + , i.e., 1 1k kb LIVE+ +∈ ⇔ 1() ()k kv b VL X+ > .

Next, Theorem 4 defines the necessary and sufficient condition for a bid to be a winning

bid.

Theorem 4 Given auction state k and new bid 1kb + , such that 1()kS b X+ = :

()1 1 1 () () \k k k k kb WIN v b VL VL X+ + +∈ ⇔ > −I I .

Let’s denote ()kWL X to be a winning level for bids on itemset X at auction state k and define it

as: ()() () \k k kWL X VL VL X= −I I . Such definition is appropriate, since (based on Theorem 4)

1 1k kb WIN+ +∈ if and only if 1() ()k kv b WL X+ > . Also note that, because of our definition of

[]kWIN ∅ =∅ , Theorem 4 provides the correct result for the special case where the new bid 1kb +

is placed on the whole auction set I , i.e., when 1()kS b + = I . Obviously, the winning level for

itemset I should be equal to the current auction revenue ()kVL I , and from Theorem 4 we

obtain exactly that: ()() () \ () () ()k k k k k kWL VL VL VL VL VL= − = − ∅ =I I I I I I , because

() () ()[] 0k kVL v WIN v∅ = ∅ = ∅ = .

Numerous properties of ()kDL X and ()kWL X can be derived from their definitions and

earlier theoretical results. Some of the more interesting properties are stated in the following

theorem.

14

Theorem 5 For any auction state k and itemsets X, Y, the following statements are true:

1. () ()k kDL X WL X≤ ;
2. () ()k kDL WL=I I ;
3. () () (\)k k kWL X DL DL X= −I I� ;
4. () () (\)k k kDL X WL WL X= −I I� ;
5. 1() ()k kDL X DL X+≤ ;

6. X Y⊆ ⇒ () ()k kDL X DL Y≤ ;
7. X Y⊆ ⇒ () ()k kWL X WL Y≤ ;
8. X Y =∅∩ ⇒ () () ()k k kDL X Y DL X DL Y≥ +∪ ;
9. kb LIVE∈ , s.t. ()S b X= ⇒ () ()kDL X v b= ;
10. kb WIN∈ , s.t. ()S b X= ⇒ () ()kWL X v b= .

The above results can provide some interesting insights about combinatorial auctions and bid

dynamics. Statement (1) is very intuitive: when bidding on itemset X at auction state k, the

winning level for X can never be lower than the deadness level of X. However, in some special

cases the deadness and winning levels can be equal, e.g., it is always the case for sub-auction I ,

as statement (2) indicates. In addition, based on statements (9) and (10), we have that

() ()k kDL X WL X= for all sub-auctions X that represent a span of a currently winning bid, i.e.,

all sub-auctions X, such that kb WIN∃ ∈ where ()S b X= . This is the case, because kb WIN∈ ⇒

kb LIVE∈ and, by combining (9) and (10), we have that () () ()k kWL X v b DL X= = .

 Furthermore, statements (3) and (4) suggest a certain symmetry (or duality) between

deadness and winning levels. Moreover, statements (6) and (7) show that both deadness and

winning levels are monotonically non-decreasing with respect to the itemset. In addition, the

deadness levels are monotonically non-decreasing with respect to the auction state, as presented

in statement (5); it is easy to show that winning levels do not have the same property. Also,

while statement (8) does indicate that the deadness levels are superadditive with respect to the

itemset, in general the same is not true for winning levels.

The following lemma provides some intuition about the inherent complexity of

combinatorial auctions by demonstrating that the number of live bids at a given state of an

auction can possibly be exponential with respect to auction size N.

15

Lemma 2 In a combinatorial auction of size N:
1. The number of live bids at any auction state cannot be greater than 2 1N − ;
2. 2 1N − is a tight upper bound, i.e., it is possible to have an auction state where there are

exactly 2 1N − live bids.

However, it is easy to see that, while the number of live bids can be exponential, the number of

winning bids can never be greater than N. This is the case, because any bid combination

(including the winning bid combination kWIN) contains only bids with non-overlapping spans.

I.e., ()kS WIN ⊆ I ⇒ kWIN N≤ ≤I .

3 Implementing Bidder Support: Data Structures and Algorithms

3.1 Infrastructure for Bidder Support

Based on the theoretical results presented earlier in this paper, we have developed data structures

that are able to store important auction state information (e.g., current deadness and winning

levels for any itemset X, current winning bid combination) and provide bidders with efficient

(real-time) access to it. Specifically, throughout the duration of the auction, we propose to use

the following two arrays, each containing some information about every itemset X:

• ValueLevel, where ValueLevel[X] always (i.e., at any auction state k) contains

the up-to-date ()kVL X for itemset X.

• LastWinBid, where LastWinBid[X] always (i.e., at any auction state k) contains

the itemset of the last bid (in a chronological sense) that belongs to the current []kWIN X

for the sub-auction X.

The space complexity of these data structures is ()2NO , because there are 2 1N − possible non-

empty itemsets in an auction of size N. As discussed in Section 2.3, it is possible to have up to

16

2 1N − live bids in such an auction (Lemma 2), where the value of each bid represents a deadness

level for a specific itemset (Theorem 5, statement 9). Therefore, intuitively, such exponential

data structures are necessary if we want to guarantee a very fast (i.e., constant-time) access to

crucial bid information, such as itemset deadness levels, that will be discussed in more detail in

Section 3.2. Therefore, for practical purposes we have that N is bounded by 25-30 or so, because

the array access is most efficient when the whole array fits into the main memory and no OS

swapping/paging needs to be performed. However, as discussed in Section 1, it is still a large

improvement over the previously known complete enumeration approaches.

There are several challenges related to efficient implementation of bidder support and,

more specifically, to the above data structures:

• How to represent data (or more specifically, itemsets) efficiently in the above data

structures? This issue is discussed in the remainder of this section.

• What auction- and bid-related information can be extracted (queried) by bidders from

these data structures in real-time? This issue is addressed in Section 3.2.

• How to keep these (exponential) data structures up-to-date after every single bid in real

time? We will address this issue in Section 3.3.

We use bitmaps to represent itemsets in both of the above arrays. Bitmaps are commonly used to

represent set-like data in many different applications, mainly because they allow for a concise

representation of sets and provide for an efficient (constant-time) implementation of many

standard set operations (set union, intersection, difference, etc.). For these reasons, our

implementation uses a bitmap-based data structure to represent the sets of items specified in the

bids placed by the auction participants.

17

More specifically, assume I is the set of items that is being auctioned, where N=I ,

and each item is encoded as a number between 0 and 1N − , i.e., {0,1, , 1}N= −…I . Then, any

possible itemset X (i.e., X ⊆ I) can be represented by a sequence of bits (i.e., a bitmap) of

length N, where ith bit (0,1, , 1i N= −…) in a bitmap is set to 1 if i X∈ ; otherwise, it is set to 0.

There exists a straightforward one-to-one correspondence between the set of all subsets of I ,

the set of all bitmaps of length N, and the set of integers {0,1, , 2 1}N −… , since there are 2N

different bitmaps of length N and each of them constitutes a binary representation of some

integer between 0 and 2 1N − . In other words, an arbitrary itemset X corresponds to integer

2i
i X∈∑ . Therefore, a standard 4-byte (32-bit) integer can represent any subset of I , where

32≤I . The following table provides some examples of itemsets and their corresponding

bitmaps (and integers) for the case {0,1,2,3}=I .

Itemset Bitmap5 Integer
∅ 0000 0

{0} 0001 1
{1,2} 0110 6

{0,2,3} 1101 13
{0,1,2,3} 1111 15

Table 2. Illustration of one-to-one correspondence between itemsets, bitmaps, and integers.

As mentioned above, using bitmap representations of sets provides for an efficient

implementation of many set operations. In fact, many set operations become can be performed

in constant-time on bitmaps/integers using bit-wise NOT, AND, OR, and XOR operations that are

supported by most microprocessors and, consequently, by many programming languages (e.g.,

C, C++). Let X̂ denote a bitmap/integer representation of itemset X. Then, the following table

5 Here we use the traditional bitmap representation – the order of bits is right-to-left, i.e., 0th bit is the rightmost one.

18

illustrates how some basic set operations can be implemented using bitmaps and logical bit-wise

operations.

Set operation Set notation Bitwise operation
Intersection X Y∩ X̂ and Ŷ
Union X Y∪ X̂ or Ŷ
Difference \X Y (assuming X Y⊇) X̂ xor Ŷ
Symmetric difference X Y÷ (i.e., (\) (\)X Y Y X∪) X̂ xor Ŷ
Complement X (i.e., \ XI) X̂ xor Î
Membership test a X∈ ? â and X̂ ≠ 0 ?
Subset test X Y⊆ ? X̂ and Ŷ = X̂ ?
Empty set test X =∅ ? ˆ 0X = ?

Table 3. Implementing basic set operations using bitmaps.

3.2 Effective Infrastructure Querying: Obtaining Auction Information in Real-Time

Assuming our data structures contain up-to-date information (we will discuss how to update

them effectively in Section 3.3), below are examples of some scenarios that may be of interest to

bidders (as well as auctioneers) and their corresponding queries/calculations that are derived

directly from the theoretical results presented earlier in this paper. Note, that in the examples

below we use the notation of itemsets and set operations (instead of bitmaps and bitwise logical

operations) for better clarity.

Example 3. Obtaining the current winning level for some itemset, e.g., “How much should I
bet on itemset X in order for my bid to be a winning bid?”

Query: ValueLevel[I] – ValueLevel[I\X]
This query is derived directly from the definition of the winning level and Theorem 4.

Example 4. Obtaining the current deadness level for some itemset, e.g., “How much should I
bet on itemset X in order for my bid not to be a dead bid?”

Query: ValueLevel[X]
This query is derived directly from the definition of the winning level and Corollary 3b.

19

Example 5. Obtaining the current revenue of the auction, i.e., “What would the total revenue
be if the auction ended right now?”

Query: ValueLevel[I]
This query is derived directly from the definition of the auction revenue.

The computational complexity of the above three queries is O(1) (in practice, no more than

several microseconds), since they only use simple array lookups.

Example 6. Obtaining the winning bid combination, i.e., “Which itemsets comprise the
current winning bid combination?” The following query/procedure prints the spans (itemsets)
and values of the bids from the currently winning bid combination:
 (1) Curr = I

(2) While LastWinBid[Curr] ≠ ∅ Do
(3) Print LastWinBid[Curr], ValueLevel[LastWinBid[Curr]]
(4) Curr = Curr\LastWinBid[Curr]
(5) End While

The above algorithm is derived from Theorem 2, i.e., on the fact that a winning combination of

any sub-auction X can be “decomposed” into the latest winning bid b and the winning bids of the

“complement” auction \ ()X S b . The computational complexity of this algorithm is ()kO WIN ,

which is minimal, because the same computational complexity is needed just to print the winning

bid combination. In the worst case, this complexity is ()O N , i.e., linear in the number of items

in the auction, since kWIN N≤ , as discussed earlier. Note that, since N is usually less than 30

or so because of the real-life space complexity restrictions mentioned earlier, the winning bid

allocation determination is also extremely efficient.

Also note, that the above algorithm can be straightforwardly adapted to find the winning

bid combination for any sub-auction X (not just for the entire auction set I), in case such

information is requested. For this purpose, simply replace I with X on line 1 in the above

algorithm.

20

3.3 Incremental Infrasture Update

The incremental update of data structures is arguably the most crucial part of the proposed

infrastructure – if we can update the auction state information effectively, then bidder-based

queries can be performed in constant or near-constant time. Assume that we have the state k of

the auction and all data structures contain up-to-date values, i.e., ValueLevel[X] = ()kVL X

and LastWinBid[X] contains the itemset of the last winning bid for sub-auction X. Let 1kb +

be a new bid that is submitted to the auction. Furthermore, let S and v be the span and value of

bid 1kb + , i.e., 1()kS S b += and 1()kv v b += . We will assume that 1 1k kb LIVE+ +∈ , because, as

demonstrated in Section 3.2 (Example 4), it takes one array lookup to retrieve the deadness level

for any itemset, i.e., it only takes a constant time to make sure whether an incoming bid is dead,

in which case no update is needed and the bid can simply be discarded. Then, the data structures

are updated for auction state (1k +) as follows:

 Input: new live bid 1kb + represented by its span S and value v.
 (1) For all X⊇S
 (2) CandidateValue = v + ValueLevel[X\S]
 (3) If CandidateValue > ValueLevel[X] Then
 (4) ValueLevel[X] = CandidateValue
 (5) LastWinBid[X] = S
 (6) End If
 (7) End For

This algorithm draws directly from the theoretical results presented earlier in this section (mainly

from Theorems 1 and 2). More specifically, based on Theorem 1, new bid 1kb + does not affect

the winning combination of any sub-auction X, such that 1()kX S b +| . Therefore, as line 1

indicates, only sub-auctions 1()kX S b +⊇ have to be considered. Moreover, based on Theorem 2,

new bid 1kb + can affect the winning combination of sub-auction 1()kX S b +⊇ only if

[] { } []1 1\ ()k k k kWIN X b WIN X S b+ +≺ ∪ . Consequently, based on the definition of ≺ and also on

21

the fact that bid combination []kWIN X precedes { } []1 1\ ()k k kb WIN X S b+ +∪ chronologically, the

current winning combination of sub-auction X will change (i.e., 1[] []k kWIN X WIN X+ ≠) only if

()1 1() () \ ()k k k kVL X v b VL X S b+ +< + Lines 2-3 in the above algorithm perform this check, and, if

required, both of the data structures are updated on lines 4-5. Specifically, line 4 updates

ValueLevel[X] with the new revenue of sub-auction X, i.e., the value of the new winning

combination { } []1 1\ ()k k kb WIN X S b+ +∪ . Also, line 5 updates LastWinBid[X] with the span

of the last winning bid, i.e., 1()kS b + .

The computational complexity of the above algorithm is ()| |2N SO − , because | |2N S− is the

number of all possible supersets of S and only a constant amount of work is needed for each

superset. To loop through all supersets X efficiently (in the For loop above), we use loopless

Grey binary code generation approach (Bitner et al. 1976), which takes only a constant amount

of time to calculate the next superset during each iteration. We present the experimental

performance results of this algorithm in the next section.

4 Experimental Results

As mentioned earlier, problem spaces with more than a dozen items are considered too complex

for winner determination problem using complete enumeration approaches and the

computational performance of such algorithms is reported to be unsatisfactory for real-time use

(de Vries and Vohra 2003). However, our implementation of the complete enumeration based

approach, presented in sections 3 and 4, is able to handle much larger auction sizes (25-30) on a

relatively obsolete machine. 6

6 All experiments were performed on a Pentium III computer with 256 MB RAM running Linux operating system.

22

Below we present some performance results of our algorithm that not only computes

winners but incrementally updates the comprehensive auction information (stored in

ValueLevel and LastWinBid arrays) after each bid in real time. As discussed in Section

3.2, this information can be used to instantly determine current winners as well as various other

bid-related characteristics (deadness, winning levels) at any time during the course of the

auction.

 We were extremely interested in the real-time capabilities of our approach, and,

therefore, we performed a “throughput” test for our incremental update algorithm. In other

words, given an auction set and a large number of incoming bids, we wanted to measure the time

it would take for our incremental update algorithm to have the ValueLevel and

LastWinBid data structures completely up-to-date after each and every bid. Since we were

not aware of any publicly available large-scale (i.e., with tens of thousands or more bids) real-life

bidding data sets, we have generated such data sets ourselves using (a) our own ad hoc random

bid generator and (b) the Combinatorial Auction Test Suite (CATS) by Leyton-Brown, Pearson,

and Shoham (2000), which has been used previously in combinatorial systems literature for

testing and benchmarking winner determination algorithms.

 Table 4 presents the “throughput” test for our incremental update algorithm for the set of

500,000 randomly generated bids using our own ad hoc bid generator. The bids were generated

using several simple schemes:

• [Random span, random value] For each bid in a data set, both the bid span and the bid

value were generated independently, i.e., both entities were picked uniformly at random

from a fixed range of values independently of each other and of the previous bids in a

data set;

23

• [Random span, proportional value] For each bid in a data set, the bid span was generated

at random; however, the bid value was proportional to the size of the span, i.e., larger bid

values were generated for larger itemsets;

• [Dynamic span (p=1/2 and p=1/3), proportional value] For each bid in a data set, the

bid span was generated dynamically by choosing an item at random and adding further

items to it with “stopping” probability p (we considered cases where p=1/2 and p=1/3).

In other words, in the p=1/2 case, on average, 50% of the bids have single-item spans

(i.e., we stopped after 1 item), 25% of the bids have 2-item spans, 12.5% of the bids 3-

item spans, etc. Moreover, the bid value was generated to be proportional to the bid span.

Clearly, the bid spans created in the p=1/3 case tended to be larger than in case p=1/2.

As Table 4 shows, even in the worst case our auction algorithm needed less than 15 minutes to

handle 500,000 bids (or less than 1.79 milliseconds per bid, on average), while at the same time

having to fully update all data structures after every one of the 500,000 bids.

Bid generation scheme
Auction

size Random Span &
Random Value

Random Span &
Proportional Value

Dynamic Span
(with p=1/2) &

Proportional Value

Dynamic Span
(with p=1/3) &

Proportional Value
24 379.6535 893.1401 210.2533 196.7459
20 23.4679 74.1205 11.6509 11.3079
16 1.0362 1.6946 1.0762 1.0368
12 0.5669 0.5763 0.5668 0.5660
8 0.5448 0.5472 0.5508 0.5205
4 0.5443 0.5461 0.5501 0.5682

Table 4. Total incremental update time to handle 500,000 bids (in seconds).

Note that, since in the above experiment we generated bids in an ad hoc manner (as described

earlier), only a very small portion of the 500,000 bids are live upon being placed. It is one of the

reasons for such effective performance, because, as discussed earlier, it only takes a constant

time (i.e., one array lookup) to make sure whether an incoming bid is dead, in which case no

24

update is needed and the bid is simply discarded. In our experiments, this deadness check was

always performed in < 0.01 milliseconds (i.e., 0.003-0.006 ms for 24-item auctions, faster for

smaller auctions). Therefore, having the comprehensive and up-to-date auction information

(such as deadness levels) readily available at every state of the auction can actually facilitate the

better real-time performance.

 One possible criticism of the above experiment could be that the bidding test sets are

generated in an ad hoc manner and they are not representative of real-life auction dynamics.

Therefore, we have also performed a similar “throughput” experiment using the bid sets

generated by CATS 2.0 software. CATS software uses a suite of distribution families to

generate realistic, economically motivated combinatorial bids that are consistent with some real-

world domains (Leyton-Brown et al., 2000). For example, the paths distribution can be used to

model bidding behavior for auctions involving truck routes, natural gas pipeline networks,

network bandwidth allocation, or the use of railway tracks. Similarly, the regions distribution

can be used to model bidding behavior for auctions involving real estate, drilling rights, or radio

spectrum. Complete details of each distribution are beyond the scope of this paper, the interested

readers are referred to (Leyton-Brown et al. 2000).

 Given a combinatorial auction of size 24N = , we used CATS software to generate 30

bidding scenarios of approximately 2000 bids each for every available distribution (using default

distribution parameters). Thus, we had about ≈60,000 bids for each distribution. As expected,

CATS software was able to generate live bids much better (i.e., the portion of dead bids was

much lower compared to our ad hoc bid generating schemes). However, the average incremental

update time per bid was still only 19-47 milliseconds (depending on a specific distribution).

Even in the “perfect information” scenario, i.e., when we looked only at live bids, the average

25

incremental update time per bid was well under 1 second (107-644 milliseconds, depending on

the distribution). Table 5 summarizes the results from this experiment.

Time (milliseconds) Distribution Total number
of bids Per bid Per live bid

arbitrary 60051 33.295 107.494
arbitrary-npv 60078 29.079 113.509
arbitrary-upv 60055 35.195 107.648
matching 60087 47.195 378.059
paths 60026 30.349 644.410
regions 60059 20.015 187.477
regions-npv 60077 19.296 199.354
regions-upv 60080 20.904 169.926
scheduling 60268 43.029 231.296

Table 5. Incremental update for 60,000 “realistic” bids generated using

CATS software for combinatiorial auctions of size 24N = .

Finally, Table 6 describes the relationship between the auction size, the span size of an incoming

bid, and the time it takes to incrementally update the data structures after the new bid is placed.

Each number presented in the table is an average of incremental update time for 100 live bids

with a given span. Here we only used live bids, because, as discussed earlier, dead bids do not

incur any updates. As reflected in Table 6, even for the largest auction the incremental update

times in worst cases (i.e., for single-item bids) were under 1 second.

Auction size (N) Bid span
Size (s) 24 23 22 21 20 18 16 14 12

1 832.812 421.530 220.249 104.486 52.083 13.456 2.748 0.573 0.143
2 449.981 216.426 112.435 58.350 28.511 7.281 1.443 0.304 0.076
3 257.651 126.297 58.559 31.412 15.549 4.131 0.800 0.167 0.043
4 128.038 66.430 32.859 17.147 8.973 2.143 0.413 0.088 0.022
5 71.041 35.719 18.521 9.017 4.845 1.151 0.213 0.045 0.012
6 36.905 19.754 9.319 5.117 2.570 0.591 0.111 0.025 ***
7 20.149 10.497 5.224 2.541 1.305 0.313 0.061 0.015 ***
8 11.137 5.430 2.825 1.472 0.709 0.161 0.031 *** ***

*** – less than 10 microseconds.

Table 6. Average incremental update time for “realistic” live bids
generated using CATS software (in milliseconds).

26

Furthermore, let (,)T N s be the time needed to update the state of the auction (of size N) after a

new live bid (with span of size s) arrives. Then, based on the empirical results in Table 6, note

that (,) 2 (, 1)T N s T N s≈ ⋅ + and (,) 2 (1,)T N s T N s≈ ⋅ − . This is consistent with the theoretical

computational complexity estimation for the incremental update algorithm, discussed in Section

3.3, i.e., ()(,) 2N sT N s O −= . Therefore, increasing a bid span by one item would reduce the

average incremental update time approximately by the factor of 2. Therefore, restricting the bid

span size (from below) is one of the possible heuristics that the auctioneer could use towards the

end of the auction (when the bidding activity is typically the most intense) to increase the

throughput of the proposed infrastructure, if needed. Obviously, reducing the auction size by

one item would also would reduce the average incremental update time approximately by the

factor of 2.

5 Conclusions and Future Work

In this paper, we develop new theoretical insights and structural properties of the bidding

dynamics in combinatorial auctions. We define new metrics of interest for the bidders such as

dead and live bids. We develop theoretical properties of these metrics and their relationships

with winning bids and winner determination. Our theoretical results are based on breaking the

problem down, by using the concept of sub-auction, to quickly identify the bids and allocation

that are affected by each new bid. We also develop efficient data structures and algorithms to

test the effectiveness of our theoretical results and to explore the feasibility of real-time bidder

support. Our implementation, essentially, reduces the bidder queries to constant time operations

that can be performed with at most a couple of array lookups, making the information gathering

task very efficient and fast. The more complex task of updating the data structures (i.e., on the

27

arrival of a new live bid) can also be conducted in milliseconds for the auction sizes that were

tested. Due to the relative lack of access to real-world combinatorial auction data, we test the

computational performance of our algorithm by using the CATS package, provided by Leyton-

Brown et al. (2000), that simulates real-world difficult data scenarios. We also test the algorithm

using randomly generated data. All the experiments indicate that our implementation can

provide real-time bidder support for moderate sized auctions.

Some areas of future research include exploration of special problem structures and

support for XOR bids, i.e., where a bidder may be interested in one of several possible itemsets.

Note, however, that XOR bids are more of a concern in sealed bid combinatorial auctions where

bidders cannot evaluate the fate of their bids themselves. In an environment with real-time

information, bidders can themselves evaluate all the itemsets that are of interest to them and

place the bids on the itemset that ranks the highest based on their respective objective functions.

Clearly, an NP-complete problem cannot be solved efficiently without any limitations.

Our approach approaches the problem from the perspective of number of bids, i.e., since the bids

can be handled very efficiently, we can support any number of bids during an auction. However,

the number of items is limited to 25-30 – although it is still a large improvement over the

previously known complete enumeration approaches. In addition, as the technology improves in

terms of memory and processing speed, we should see an improvement in the number of items as

well. A key aspect of our approach is the use of sub-auctions to update the auction-wide

information. This artifact can be exploited to create parallel algorithms, increasing the current

limitation to potentially a larger number while keeping the overall response time reasonable.

28

References

Ausubel, L., and P. Milgrom, “Ascending Auctions with Package Bidding,” Frontiers of

Theoretical Economics, 1 (1), 2002. Available from The Berkeley Electronic Press,

http://www.bepress.com/bejte

Banks, J. S., J. O. Ledyard, and D. Porter, “Allocating Uncertain and Unresponsive Resources:

An Experimental Approach,” Rand Journal of Economics, 20 (1), 1-25.

Bitner, J., G. Ehrlich, and E. Reingold, “Efficient Generation of the Binary Reflected Gray Code

and its Applications,” Communications of the ACM, 19 (9), 1976, 517-521.

Brewer, P. J., and C. R. Plott, “A Binary Conflict Ascending Price (BICAP) Mechanism for the

Decentralized Allocation of the Right to Use Railroad Tracks,” International Journal of

Industrial Organization, 14 (6), 857-886.

de Vries, S., and R. Vohra, “Combinatorial Auctions: A Survey,” INFORMS Journal of

Computing, 15 (3), 2003, 284-309.

Hudson, B., and T. Sandholm, “Effectiveness of Preference Elicitation in Combinatorial

Auctions,” AAMAS-02 workshop on Agent-Mediated Electronic Commerce, 2002.

(http://www-2.cs.cmu.edu/~sandholm/elicitation.CMU-CS-02-124.pdf)

Leyton-Brown, K., M. Pearson, and Y. Shoham, “Towards a Universal Test Suite for

Combinatorial Auction Algorithms,” Proceedings of ACM Conference on Electronic

Commerce, 2000.

Nisan, N., “Bidding and Allocation in Combinatorial Auctions,” Proceedings of ACM

Conference on Electronic Commerce, 2000. (http://www.cs.huji.ac.il/~noam/auctions.pdf)

Parkes, D. C., “iBundle: An Efficient Ascending Price Bundle Auction,” Proceedings of Second

ACM Conference on Electronic Commerce, ACM Press, NY, 1999, 148-157.

29

Pekec, A., and M. H. Rothkoph, “Combinatorial Auction Design,” Management Science, 49

(11), 2003, 1485-1503.

Rothkoph, M. H., A. Pekec and R. M. Harstad, “Computationally Manageable Combinatorial

Auctions, Management Science, 44 (8), 1998, 1131-1147.

Sandholm, T., “An Algorithm for Optimal Winner Determination in Combinatorial Auctions,”

Proceedings of IJCAI-99, Stockholm, 1999, 542-547.

Sandholm, T., “Algorithm for Optimal Winner Determination in Combinatorial Auctions,”

Artificial Intelligence, 135, 2002, 1-54.

Tennenholtz, M., “Some Tractable Combinatorial Auctions,” Proceedings of the Seventeenth

National Conference on Artificial Intelligence, 2000, Austin, Texas, 2000, 98-103.

30

Appendix A: Proofs of Main Theoretical Results

Theorem 1 ()()1 1() [] []k k kX S b WIN X WIN X+ +∀ =| .

Proof. Assume 1()kX S b +| . Then we have (1 1[]k kb B X+ +∉) ⇒ (1[] []k kB X B X+=) ⇒

(1[] []k kX X+=C C). Based on this and the definition of 1[]kWIN X+ we immediately have that

1 1() max [] max [] ()k k k kWIN X X X WIN X+ += = =≺ ≺C C .

Theorem 2 () [] [] { } []()1 1 1 1() max , \ ()k k k k k kX S b WIN X WIN X b WIN X S b+ + + + ∀ =  ≺ ∪⊇ .

Proof. Assume 1()kX S b +⊇ . Let 1C and 2C be two subsets of 1[]k X+C that are defined as

follows: { }1 1 1[] |k kC C X b C+ += ∈ ∈C , { }2 1 1[] |k kC C X b C+ += ∈ ∉C . Clearly, 1 2C C =∅∩ and

1 2 1[].kC C X+=∪ C Therefore,

[] []1 1 1 2 1 2[] max [] max max max , maxk kWIN X X C C C C+ += = =≺ ≺ ≺ ≺ ≺∪C .

Since { } { }2 1 1[] | [] []k k k kC C X b C C X X+ += ∈ ∉ = ∈ =C C C , we derive 2max C≺ as follows:

 2max max [] []k kC X WIN X= =≺ ≺ C .

Furthermore, we have defined 1C so that ()()1 1kC C b C+∀ ∈ ∈ . Based on this, 1max C≺ is:

 1max C≺ = { }1 1max [] |k kC X b C+ +∈ ∈≺ C

 = { }1 1 1 1{ } max \{ } | [],k k k kb C b C X b C+ + + +∈ ∈≺∪ C

 = { }1 1{ } max | [], () ()k k kb C C X S C S b+ +∈ =∅≺∪ ∩C

 = { }1 1{ } max [] | () \ ()k k kb C X S C X S b+ +∈ ⊆≺∪ C

 = []1 1{ } max \ ()k k kb X S b+ +≺∪ C = []1 1{ } \ ()k k kb WIN X S b+ +∪ .

Hence, we have that [] [] { } []1 1 1max , \ ()k k k k kWIN X WIN X b WIN X S b+ + + =  ≺ ∪ .

31

Lemma 1 For any auction state k and itemsets X, Y, the following statements are true:
1. 1() ()k kVL X VL X+≤ ;
2. () ()() ()k kX Y VL X VL Y⊆ ⇒ ≤ ;

3. () ()() () ()k k kX Y VL X VL Y VL X Y=∅ ⇒ + ≤∩ ∪ .

Proof. 1. By definition, () () []() [] max [] max ()
kk k k C XVL X v WIN X v X v C∈= = =≺ ^^ . Similarly,

11 []() max ()
kk C XVL X v C
++ ∈= ^ . Since 1[] []k kX X+⊆^ ^ , we have 1() ()k kVL X VL X+≤ .

2. Similarly to (1), []() max ()
kk C XVL X v C∈= ^ and []() max ()

kk C YVL Y v C∈= ^ . Since X Y⊆ , we

have that () ()k kVL X VL Y≤ .

3. X Y =∅∩ ⇒ () ()[] []k kS WIN X S WIN Y =∅∩ ⇒ ()[] [] []k k kWIN X WIN Y X Y∈∪ ^ ∪ ⇒

() ()[] [] max []k k kv WIN X WIN Y v X Y≤ ≺∪ ^ ∪ ⇒ () () ()k k kVL X VL Y VL X Y+ ≤ ∪ .

Theorem 3 Given auction state k and bid kb B∈ such that ()S b X= , we have:

kb LIVE∈ ⇔ []kb WIN X∈ .

Proof. ⇒ Assuming kb LIVE∈ , by definition we have that l kB B∃ ⊇ such that lb WIN∈ .

Suppose otherwise, []kb WIN X∉ , and therefore, { } []kb WIN X≺ . Let W be the following bid

combination: ()\{ } []l kW WIN b WIN X= ∪ . Since ()\{ } []l kWIN b WIN X =∅∩ , W is a valid bid

combination, i.e., lW ∈C . Furthermore, the { } []kb WIN X≺ order on bid combinations implies

that () (){ } \{ } [] \{ }l k lb WIN b WIN X WIN b∪ ≺ ∪ . Hence, we have lWIN W≺ , where lW ∈C .

Therefore, lWIN cannot be a winning combination at stage l. Contradiction. ⇐ Assuming

[]kb WIN X∈ , we have that { } []kb WIN X= and, therefore, () ()kv b VL X= . Consider auction

state (1k +) and choose a new bid 1kb + such that 1() \kS b X+ = I and 1() () ()k k kv b VL VL X+ > −I .

We can rewrite the previous inequality as: () ()1 1[] () [\ ()]k k k kv WIN v b v WIN S b+ +< +I I . By

32

directly applying Theorem 2, we then have that 1 1{ } []k k kWIN b WIN X+ += ∪ . Since []kb WIN X∈ ,

we have that 1kb WIN +∈ . Then, by definition, kb LIVE∈ .

Corollary 3a []k kX
LIVE WIN X

⊆
=∪ I

.

Proof. Suppose, kb LIVE∈ . From Theorem 3 we have that [()]kb WIN S b∈ , and, since

()S b ⊆ I , we have []kX
b WIN X

⊆
∈∪ I

. Conversely, if []kX
b WIN X

⊆
∈∪ I

, then there must

exist sub-auction X, ()X S b⊇ , such that []kb WIN X∈ . From Lemma 3 (see Appendix B), we

have that [()]kb WIN S b∈ . Furthermore, by applying Theorem 3 we get kb LIVE∈ .

Corollary 3b Given auction state k and new bid 1kb + , such that 1()kS b X+ = , the following is
true: 1 1k kb DEAD+ +∈ ⇔ 1() ()k kv b VL X+ ≤ .

Proof. ⇒ If 1 1k kb DEAD+ +∈ then from Theorem 3 we have that 1 1[]k kb WIN X+ +∉ and, therefore

(based on Theorem 2), 1[] []k kWIN X WIN X+ = . Consequently 1 1[]k kb WIN X+ +≺ , which implies

1 1() () ()k k kv b VL X VL X+ +≤ = . ⇐ Conversely, if 1() ()k kv b VL X+ ≤ , we have that

1 []k kb WIN X+ ≺ , since []kWIN X precedes 1kb + chronologically. Therefore, based on Theorem 2,

1 1[]k kb WIN X+ +∉ and, from Theorem 3, 1 1k kb DEAD+ +∈ .

Theorem 4 Given auction state k and new bid 1kb + , such that 1()kS b X+ = :

()1 1 1 () () \k k k k kb WIN v b VL VL X+ + +∈ ⇔ > −I I .

Proof. From Theorem 2 we have: 1 1k kb WIN+ +∈ if and only if 1{ } [\]k k kWIN b WIN X+≺ ∪ I .

Based on the definition of strict total order ≺ and taking into account that combination kWIN

chronologically precedes bid combination 1{ } [\]k kb WIN X+ ∪ I , we have that

()1() () \k k kVL v b VL X+< +I I .

33

Theorem 5 For any auction state k and itemsets X, Y, the following statements are true:

1. () ()k kDL X WL X≤ ;
2. () ()k kDL WL=I I ;
3. () () (\)k k kWL X DL DL X= −I I� ;
4. () () (\)k k kDL X WL WL X= −I I� ;
5. 1() ()k kDL X DL X+≤ ;

6. X Y⊆ ⇒ () ()k kDL X DL Y≤ ;
7. X Y⊆ ⇒ () ()k kWL X WL Y≤ ;
8. X Y =∅∩ ⇒ () () ()k k kDL X Y DL X DL Y≥ +∪ ;
9. kb LIVE∈ , s.t. ()S b X= ⇒ () ()kDL X v b= ;
10. kb WIN∈ , s.t. ()S b X= ⇒ () ()kWL X v b= .

Proof.

1. Based on Lemma 1, () (\) ()k k kVL VL X VL X≥ +I I . Hence, () () (\)k k kVL X VL VL X≤ −I I

and, from definitions of ()kDL X and ()kWL X , we have () ()k kDL X WL X≤ .

2. By definition, () ()k kDL VL=I I and () () () ()k k k kWL VL VL VL= − ∅ =I I I .

3. Immediate from definitions, i.e., () () (\) () (\)k k k k kWL X VL VL X DL DL X= − = −I I� I I� .

4. Immediately from (3), only replace X by \ XI and ()kDL I by ()kWL I (based on 2).

5. From Lemma 1, 1 () ()k kVL X VL X+≤ . Hence, 1() ()k kDL X DL X+≤ .

6. From Lemma 1, X Y⊆ ⇒ () ()k kVL X VL Y≤ . Hence, () ()k kDL X DL Y≤ .

7. Similarly to (6), X Y⊆ ⇒ \ \Y X⊆I I ⇒ (\) (\)k kVL Y VL X≤I I ⇒

 () (\) () (\)k k k kVL VL X VL VL Y− ≤ −I I I I ⇒ () ()k kWL X WL Y≤ .

8. From Lemma 1, X Y =∅∩ ⇒ () () ()k k kVL X Y VL X VL Y≥ +∪ ⇒

 () () ()k k kDL X Y DL X DL Y≥ +∪ .

9. From Theorem 3 we have that []kb WIN X∈ or, in other words, [] { }kWIN X b= . Hence,

() ()kv b VL X= and, therefore, () ()kv b DL X= .

10. kb WIN∈ ⇒ { } [\]k kWIN b WIN X= ∪ I ⇒ () () (\)k kVL v b VL X= +I I . Hence,

() () (\)k kv b VL VL X= −I I and, therefore, () ()kv b WL X= .

34

Lemma 2 In a combinatorial auction of size N:
1. The number of live bids at any auction state cannot be greater than 2 1N − ;
2. 2 1N − is a tight upper bound, i.e., it is possible to have an auction state where there are

exactly 2 1N − live bids.

Proof.

(1) A set of size N can have 2 1N − different non-empty subsets. Therefore, in a combinatorial

auction of size N there can be 2 1N − different bid spans (corresponding to each non-empty

subset). Obviously, there can be only one live bid with given span X. (If there are multiple bids

submitted with the same span, only the one with the largest value can possibly be a live bid. If

there are several bids with the same span and the same largest value, only the earliest of them

can possibly be a live bid.) Therefore, the number of live bids is always less than or equal to

2 1N − .

(2) Suppose that, exactly one bid has been submitted on each possible itemset (hence, there are

2 1N − bids), where the value of the bid on itemset X was set as 2 | | 1X⋅ − . Then the value of any

bid combination C can be expressed as: () () 2 | () | 1 2 | () | | |
b C b C

v C v b S b S C C
∈ ∈

= = ⋅ − = ⋅ −∑ ∑ .

By maximizing 2 | () | | |S C C⋅ − we derive that the current winning combination consists of a

single bid on the whole auction set and has value 2 1N⋅ − . It is easy to see that all these 2 1N −

bids are live. Suppose otherwise, i.e., there exists bid b (where ()S b X= and () 2 | | 1v b X= ⋅ −)

that is dead. Choose a brand new bid b′ , such that () \S b X′ = I and () 2 2 | |v b N X′ > ⋅ − ⋅ .

Then, bid combination { , }C b b′ ′= is a new winning combination, because its value

() () () 2 1 2 2 2 1v C v b v b X N X N′= + > ⋅ − + ⋅ − ⋅ = ⋅ − . Since b C′∈ , by definition b is live.

Contradiction.

35

Appendix B: Suplementary Theoretical Results

Lemma 3 For any bid kb B∈ and any sub-auction ()X S b⊇ : []kb WIN X∈ ⇒ [()]kb WIN S b∈ .

Proof. Assume that ()X S b≠ (the case ()X S b= is straightforward). Suppose otherwise, i.e.,

[()]kb WIN S b∉ and, therefore, { } [()]kb WIN S b≺ . Consider ()[] \{ } [()]k kW WIN X b WIN S b= ∪ .

Since ()[()] ()kS WIN S b S b⊆ , W is a valid bid combination for sub-auction X, i.e., []kW X∈^ .

Furthermore, { } [()]kb WIN S b≺ ⇒ () (){ } [] \{ } [()] [] \{ }k k kb WIN X b WIN S b WIN X b∪ ≺ ∪ ⇒

[]kWIN X W≺ , where []kW X∈^ . Hence, []kWIN X is not a winning bid combination.

Contradiction.

