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Abstract 

Many auctions involve selling several distinct items simultaneously, where bidders can bid on 

the whole or any part of the lot.  Such auctions are referred to as combinatorial auctions.  

Examples of such auctions include truck delivery routes, furniture, and FCC spectrum.  

Determining winners in such auctions is an NP-complete problem and significant research is 

being conducted in this area.  However, multiple round (iterative) combinatorial auctions present 

significant challenges in bid formulations as well.  Since the combinatorial dynamics in iterative 

auctions can make a given bid a part of winning and non-winning set of bids without any 

changes in the bid, bidders are usually not able to evaluate whether they should revise their bid at 

a given point in time or not.  Therefore, in this paper we address various computational problems 

that are relevant from the bidder’s perspective.  In particular, we introduce several bid evaluation 

metrics that can be used by bidders to determine whether any given bid can be a part of the 

winning allocation and explore their theoretical properties.  Based on these metrics, we also 

develop efficient data structures and algorithms that provide comprehensive information about 

the current state of the auction at any time, which can help bidders in evaluating their bids and 

bidding strategies.  The performance analysis suggests that the proposed approach is suitable for 

real-time bidder support. 
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1 Introduction 
Online auctions are among the most widely used electronic market mechanisms on the Internet.  

In an auction, a seller sells one or several objects (goods) to several potential buyers.  In typical 

single-object auctions, determining the auction’s winner and its payment is a computationally 

tractable problem.  In simultaneous auctions of several distinct items, it is often desirable to 

allow bids on combinations of items because of complementarities or positive externalities 

(Hudson and Sandholm 2002).  Such auctions are called combinatorial auctions.  It has been 

shown that combinatorial auctions can lead to more efficient allocations than traditional auction 

mechanisms when buyers’ valuations of the items are dependent on the specific combination of 

items they are able to win (Hudson and Sandholm 2002, de Vries and Vohra 2003).  However, 

the winner determination problem in such auctions is computationally intractable, i.e., NP-

complete (Rothkoph et al. 1998, Sandholm 1999).  Therefore, researchers have primarily focused 

on the winner determination problem and the previous work can be broadly categorized into: (1) 

development of heuristics for solving the general winner determination problem (Sandholm 

1999, 2002) and (2) identification of tractable special cases of the winner determination problem 

(Rothkoph et al. 1998, Tennenholtz 2000).1 

 However, in multi-round (or iterative) open auctions, bidders need to evaluate the 

efficacy of their bids.  In single-unit iterative auctions (e.g., English auctions), if a bidder is not 

the highest bidder, she needs to bid an amount higher than the current highest bid to have a 

chance to win the auction.  However, in combinatorial auctions this is not necessarily the case.  

A bid that is not among the current winner2 can be among the future winners simply based on the 

                                                 
1  The complete coverage of extensive research in these areas is beyond the scope of this paper; de Vries and Vohra 
(2003) present an extensive up-to-date bibliography of research in combinatorial auctions.  
2  A current winner is defined as a set of bids that would win the allocation of desired items if the auction were to 
stop at that point in time. 
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combinations of later bids.  For example, if there are 3 items A, B, and C and the current bids 

are: (i) $10 for AB; and (ii) $5 for A, the second bid is not current winner.  However, if a new 

bid of $6 for BC arrives, then, assuming the auctioneer is maximizing his revenue, bid (ii) will be 

among the winning bids.  Therefore, it is not in the best interest of a bidder to always update 

their bids.  Unfortunately, due to the complexity of the winner determination problem, bidders in 

iterative combinatorial auctions usually do not even know whether their bid is currently winning 

or not.   

Research in iterative combinatorial auctions has primarily focused on creating specific 

mechanisms that either focus on specific application or create rules and restrictions to allow 

creation of several well defined rounds of bidding.  An example of mechanisms for specific 

applications is the BICAP mechanism created by Brewer and Plott (1996) for the rights to use 

railroad tracks.  Examples of creating specific rules to enable multiround computation of winner 

determination include iBundle by Parkes (1999), Ausubel and Milgrom (2002), and Rothkoph et 

al. (1998).  Other interesting ideas include shifting the onus of bid evaluation on the bidders, for 

example Banks, Ledyard, and Porter (1989) create a mechanism in which it is the responsibility 

of the bidders to look at the existing bids and submit a new bid that makes the combined 

“package” optimal.  Other researchers, such as Nisan (2000), provide a bidding language so that 

bidders can represent their preferences (bid/item combination) in sealed bid (non iterative) 

auctions.   

Pekec and Rothkoph (2003) note that the continuous time combinatorial auctions are 

difficult to conduct for more than a handful of items.  In their opinion, it is preferable to design 

mechanisms that identify discrete rounds with specific rules making winner determination 

efficient.  However, they note that if it is not possible to create discrete rounds then “bidtakers 
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should take particular care in providing tools that help bidders in bid preparation.”  Overall, it 

is fair to say that the issue of providing comprehensive real-time information to bidders during 

the auction has been largely untouched. 

 In this paper, we take a different approach and address various computational problems 

that are relevant from the bidder’s perspective.  We develop novel data structures and algorithms 

that provide comprehensive information about the current auction state to bidders in iterative 

combinatorial auctions, which can help bidders in evaluating their bids and bidding strategies.  In 

particular, we introduce several bid evaluation metrics that can be used by bidders to determine 

whether any given bid can be a part of the winning allocation and develop computationally fast 

algorithms that calculate these metrics.  The introduction of these bid evaluation metrics leads to 

the following significant results:  

• It facilitates access to the crucial bid-related information to the bidders anytime during 

the course of an auction as opposed to traditional approaches that only provide final 

allocation information; 

• Since our algorithms and data structures provide access to the complete state of a 

combinatorial auction in real-time, winners can be easily determined incrementally and 

are known after each new bid;  

• Development of new bid evaluation metrics can offer insights into the underlying 

structure of combinatorial auctions and provide novel directions for future research. 

The prior research indicates that exhaustive state space-based approach (or complete 

enumeration approach) for winner determination in combinatorial auction is only feasible for 

cases for less than a dozen items (Sandholm 2002, Pekec and Rothkoph 2003).  Moreover, the 

computational performance of such algorithms is reported to be unsatisfactory for real-time use 
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(de Vries and Vohra 2003).  In this paper, we extend these boundaries to a much larger number 

(25-30).  We provide theoretical foundations of the interrelationships and tradeoffs among the 

exponential number of possible bids.  Based on these relationships, we define some important 

constructs, such as sub-auctions as well as live and dead bids.  We then develop data structures 

that support real-time bidder queries and an efficient algorithm for keeping these data structures 

up-to-date throughout the duration of an auction.  We then use this algorithm to perform 

extensive computational experiments to demonstrate the performance of our implementation.  

The experimental results indicate that our implementation is capable of providing real-time 

bidder support for auction sizes where even a single time winner determination problem is 

considered challenging. 

2 Combinatorial Auction Dynamics: Theoretical Analysis 

2.1  Preliminaries and Definitions 

Let I  be the set of items to be auctioned, and let N = I .  We use the terms auction set and 

auction size to refer to I  and N, respectively.  In a combinatorial auction, participants (person, 

software agent, etc.) can place bids on any itemset, i.e., any non-empty subset of I .   

An arbitrary bid b can be represented by the tuple ( , , )b S v t= , where S ⊆ I  ( S ≠ ∅ ), 

v +∈R , and t +∈R .  Here S denotes the itemset the bid was placed on, also called the span of the 

bid; v denotes the value of the bid (e.g., the monetary amount specified in this bid); and t denotes 

the time the bid is placed.  Given bid b, we use the notation ( )S b , ( )v b , and ( )t b  to refer to the 

span, value, and time of the bid, respectively.   

We assume that there exists a strict chronological order to bids, i.e., that no two bids 

arrive at the exactly same time moment, or more formally, for any two different bids b′  and b′′  
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we always have ( ) ( )t b t b′ ′′≠ .  Therefore, all bids in an auction can be ordered according to this 

order (i.e., 1 2 3, , ,b b b … ).  This is a natural assumption (commonly accepted in auction literature) 

and is used for tie-breaking purposes.  For example, if we have two bids with identical spans and 

identical values, the earlier bid is typically preferred over the later one.   

Because of the existence of the strict chronological order of bids, we can introduce the 

notion of the auction states, which are represented by non-negative natural numbers.  In 

particular, auction state k (where 0,1,2,k = … ) refers to the auction after first k bids are 

submitted.  This bid set is denoted as kB , i.e., 1{ , , }k kB b b= … .  Auction state 0 refers to the 

auction before any bids are made, i.e., 0B =∅ .  Obviously, k lB B⊆ , for any k and l such that 

k l≤ .   

Given an arbitrary set of bids B  in a combinatorial auction, a bid set C  (where C B⊆ ) 

is called a bid combination in B if all bids in C  have non-overlapping spans, i.e., for every 

,b b C′ ′′∈  such that b b′ ′′≠ , we have ( ) ( )S b S b′ ′′ = ∅∩ .  Let k^  denote the set of all bid 

combinations possible at auction state k, or, more formally, 

{ }| , , ( ) ( )k kC B b b C b b S b S b′ ′′ ′ ′′ ′ ′′= ⊆ ∈ ≠ ⇒ =∅∩C . 

We assume that the winners of the auction are determined by maximizing the seller’s 

revenue, i.e., max ( )
k

b CC
bν

∈∈
∑^

.  The bid combination that maximizes this expression is called a 

winning bid combination and is denoted as kWIN  (for auction state k).  Moreover, given auction 

state k, bid kb B∈  is called a winning bid in kB  if kb WIN∈ .  Furthermore, if bid kb B∈  is not a 

winning bid in kB  and cannot possibly be a winning bid in any subsequent auction state then b is 

called a dead bid in kB .  Formally, bid kb B∈  is dead if ( )( )l k lB B b WIN∀ ⊇ ∉ .  The set of all 
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dead bids in kB  is denoted as kDEAD .  On the other hand, if kb DEAD∉  then bid kb B∈  is 

called a live bid in kB .  The set of all live bids in kB  is denoted as kLIVE .  Based on the 

definitions of kWIN , kDEAD  and kLIVE , note that: k kDEAD LIVE =∅∩ , 

k k kDEAD LIVE B=∪ , k kWIN LIVE⊆ , and 1k kDEAD DEAD +⊆ .   

In order to determine the winning bid combination, we need to establish a preference 

order on various bid combinations.  Note that, since a bid combination is a set of bids with non-

overlapping spans, we can straightforwardly extend span, value, and time notions from bids to 

bid combinations as follows.  Let C  be a bid combination.  Then ( )S C , ( )v C , and ( )t C  are 

defined as follows: 

( ) ( )
b C

S C S b
∈

=∪ ,    ( ) ( )
b C

v C v b
∈

=∑ ,    and    ( ) max ( )
b C

t C t b
∈

= . 

Also, for the purpose of notational completeness, we define the span, value, and time of an 

empty bid combination ∅ as follows: ( )S ∅ =∅ , ( ) 0v ∅ = , and ( ) 0t ∅ = .  

To incorporate a strict tie-breaking mechanism into the winner determination process, we 

will define a strict total order for sets of bid combinations by defining a ≺  relation on bid 

combinations.  In other words, given an arbitrary set of bid combinations C , for any ,C C′ ′′∈C  

such that C C′ ′′≠  we will always have that either C C′ ′′≺  (in this case, we will say that C′′  is 

better than C′ ) or C C′′ ′≺  (i.e., C′  is better than C′′ ).  According to the revenue maximization 

requirement which combinatorial auctions typically follow, relation ≺  must have the following 

“value monotonicity” property: ( )( ), ( ) ( )kC C C C C C Cν ν′ ′′ ′ ′′ ′ ′′∀ ∈ ⇒ ≤≺ .  In other words, C′′  

cannot be better than C′  if C′′  provides less value than C′ .  Therefore, the above property 

guarantees that the best bid combination will always be the one with the maximal revenue.  

However, this property alone is not sufficient for relation ≺  to be a strict total order, because a 
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combinatorial auction can have several bid combinations with the (same) maximal revenue.  

Therefore, in addition to the above value monotonicity property, relation ≺  must have a tie-

breaking mechanism to be able to order bid combinations with equal values.  The following 

example illustrates the importance of the tie-breaking mechanism. 

Example 1.  Consider a 4-item auction, i.e., { , , , }a b c d=I .  Furthermore, assume that the 
following 4 bids were made in the exact chronological sequence shown here: 

1 ( ,15)b ab= , 2 ( ,10)b bc= , 3 ( ,10)b ad= , 4 ( ,5)b cd= . 
The maximal possible value of a bid combination in the above example is 20, and we have two 
bid combinations, i.e., {b1, b4} and {b2, b3}, that have such value.  Which one should be picked 
as a winning combination?  If each of these bid combinations consisted of a single bid then we 
could straightforwardly break the tie by choosing the earlier bid.  However, bid combinations 
{b1, b4} and {b2, b3} are not straightforwardly comparable in terms of time.  E.g., combination 
{b1, b4} started earlier than {b2, b3} (because of b1), but {b2, b3} ended earlier than {b1, b4} 
(because of b4).   

 
While several different tie-breaking mechanisms for relation ≺  are possible, because of 

the space limitations we consider one specific tie-breaking approach in this paper.3  In this 

approach, if there are several bid combinations with equal value, the earliest bid combination is 

chosen over the later ones.  Justification for this is straightforward: we do not want to change the 

winning bid combination as long as the auction revenue does not increase.  Formally, we will 

state that C′′  is better than C′  (i.e., C C′ ′′≺ ), if either of the following two conditions is true: 

(i) ( ) ( )v C v C′ ′′< ; or  

(ii) ( ) ( )v C v C′ ′′= , and ( \ ) ( \ )t C C t C C′ ′′ ′′ ′> . 

Note that, here we use ( \ ) ( \ )t C C t C C′ ′′ ′′ ′>  instead of the simpler ( ) ( )t C t C′ ′′>  condition in 

order to eliminate the “overlap” between the bid combinations, i.e., we eliminate bids that are 

present in both C′  and C′′ .  Based on the fact that ( \ ) ( \ )C C C C′ ′′ ′′ ′ = ∅∩  and that there exists a 

strict chronological order of individual bids, we always have that ( \ ) ( \ )t C C t C C′ ′′ ′′ ′≠ .  This 

                                                 
3  Most of the theoretical results presented in this paper also hold for other strict total order relations ≺  that have the 
value monotonicity property. 
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makes condition (ii) a true tie-breaker, since it is not possible to have ( \ ) ( \ )t C C t C C′ ′′ ′′ ′=  when 

C C′ ′′≠ .  Furthermore, it is straightforward to show formally that ≺  is truly a strict total order, 

i.e., that it is irreflexive (i.e., C C≺  is not true for any C), transitive (C C′ ′′≺  and C C′′ ′′′≺  

implies C C′ ′′′≺ ), and total (as was demonstrated earlier in this paragraph).   

Example 2.  Using the above definition of strict total order on bid combinations, the winning bid 
combination in Example 1 would be {b2, b3}.  In other words, we have that {b2, b3} 

1 4 2 3{ , } { , }b b b b≺ , because ( ) ( )1 4 2 3{ , } { , }v b b v b b= , but: 

( ) ( ) ( ) ( )1 4 2 3 1 4 4 3 2 3 2 3 1 4{ , } \{ , } { , } ( ) ( ) { , } { , } \{ , }t b b b b t b b t b t b t b b t b b b b= = > = = . 
 

Once the strict total order is defined on bid combinations, we can rewrite the winner 

determination problem simply as: maxk kWIN = ≺C .  With the strict total order on bid 

combinations in place, we can now derive a multitude of results about various aspects of 

combinatorial auctions.  

2.2  Sub-auctions and Their Winning Bid Combinations 

Since we want to be able to provide a bidder the information regarding the auction at every 

instant, we need to know the currently winning bids at each stage of the auction.  For 

representational simplicity we do this by defining the concept of sub-auction: given auction state 

k and itemset X, define [ ]kB X  as { }[ ] | ( )k kB X b B S b X= ∈ ⊆ .  We can then say that each 

itemset X ( X ⊆ I ) defines a sub-auction of the overall auction I .   

Furthermore, given auction state k and itemset X, [ ]k XC  denotes the set of all bid 

combinations in [ ]kB X , i.e., { }[ ] [ ] | , , ( ) ( )k kX C B X b b C b b S b S b′ ′′ ′ ′′ ′ ′′= ⊆ ∈ ≠ ⇒ =∅∩C .  Note 

that, by definition, [ ]k kB B≡ I  and [ ]k k≡^ ^ I .  The following table states three intuitive 

properties of [ ]kB X  and [ ]k XC  that follow immediately from their definitions.  In other words, 

for any non-empty itemsets X, Y and any auction state k, all the statements in Table 1 are true. 
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Description Properties of [ ]kB X  Properties of [ ]k XC  
Monotonicity 
w.r.t. auction state 1[ ] [ ]k kB X B X+⊆  1[ ] [ ]k kX X+⊆C C  

Monotonicity 
w.r.t. sub-auction ( ) ( )[ ] [ ]k kX Y B X B Y⊆ ⇒ ⊆  ( ) ( )[ ] [ ]k kX Y X Y⊆ ⇒ ⊆C C  

“Superadditivity” 
w.r.t. sub-auction 

[ ] [ ] [ ]k k kB X Y B X B Y⊇∪ ∪  [ ] [ ] [ ]k k kX Y X Y⊇∪ ∪C C C  

 
Table 1.  Various properties of [ ]kB X  and [ ]k XC . 

 
 

Given the strict total order on bid combinations, the winner determination problem for 

each sub-auction is formulated as: [ ] max [ ]k kWIN X X= ≺ C , where [ ]kWIN X  represents the 

winning bid combination for sub-auction X at auction state k.  Note that, by definition, 

 [ ]k kWIN WIN≡ I  at each stage k ( 1,2,k = … ).  Again, for the purpose of notational 

completeness we define [ ]kWIN ∅ =∅ .   

To be able to keep track of winning bids at each state of the auction, one of the important 

issues is to understand the iterative dynamics of winning bid combinations, i.e., how the current 

winning bid combination changes when the new bid is submitted to the auction.  Suppose that we 

are at auction state k (i.e., k bids have been submitted so far) and a new bid 1kb +  is placed.  The 

following two theorems explain the dynamics of the winning bid combination for each sub-

auction X, i.e., the relationship between [ ]kWIN X  and 1[ ]kWIN X+  for each sub-auction X. 

Theorem 1  ( )( )1 1( ) [ ] [ ]k k kX S b WIN X WIN X+ +∀ =| .4 

Theorem 2  ( ) [ ] [ ] { } [ ]( )1 1 1 1( ) max , \ ( )k k k k k kX S b WIN X WIN X b WIN X S b+ + + + ∀ =  ≺ ∪⊇ . 

Simply put, Theorem 1 says that for all sub-auctions X that 1kb +  does not belong to (i.e., 

1( )kS b X+ {  or, in other words, 1 1[ ]k kb B X+ +∉ ), the winning bid combination does not change.  

                                                 
4  Proofs of all theoretical results are provided in the appendix. 
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Theorem 2 indicates that for all sub-auctions X that 1kb +  does belong to, the winning bid 

combination of sub-auction X can change only if the combination of new bid 1kb +  and the 

winning bids in the 1\ ( )kX S b +  sub-auction is better than the previous winning bid combination 

of sub-auction X.  Note that, for the special case where 1( )kX S b +=  Theorem 2 is simplified to 

[ ] [ ]1 1max [ ],{ }k k kWIN X WIN X b+ += ≺ , because [ ]kWIN ∅ =∅ . 

 Let ( )kVL X  be the value level of sub-auction X at auction state k or, more formally, 

( )( ) [ ]k kVL X v WIN X= .  In other words, ( )kVL X  represents the maximal possible revenue from 

sub-auction X at auction state k.  Note that the revenue of the entire auction is then denoted as 

( )kVL I .  Based on the definition of ( )kVL X , we can derive various properties of ( )kVL X , as 

stated in the following lemma. 

Lemma 1  For any auction state k and itemsets X, Y, the following statements are true: 

1. 1( ) ( )k kVL X VL X+≤ ; 
2. ( ) ( )( ) ( )k kX Y VL X VL Y⊆ ⇒ ≤ ; 

3. ( ) ( )( ) ( ) ( )k k kX Y VL X VL Y VL X Y=∅ ⇒ + ≤∩ ∪ . 

In other words, ( )kVL X  (or the revenue of sub-auction X at auction state k) is monotonically 

non-decreasing with respect to both auction state k and sub-auction X.  It is also superadditive 

with respect to the sub-auction – the cumulative revenue from two non-overlapping sub-auctions 

cannot be greater than the revenue of the combined sub-auction.   

2.3  “Deadness” and “Winning” Levels of Bids and Their Theoretical Properties 

In this section we derive several theoretical results about dead, live, and winning bids, including 

the necessary and sufficient conditions for determining whether a given bid is dead, live, or 

winning at each state of a combinatorial auction.  We begin with the following theorem that 
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identifies an important correspondence between the live bids of the auction and the winning 

combinations of individual sub-auctions.   

Theorem 3  Given auction state k and bid kb B∈ , such that ( )S b X= , we have:  

kb LIVE∈  ⇔  [ ]kb WIN X∈ . 

The above theorem states that bid b is live at auction state k if and only if b is a winning bid in a 

sub-auction defined by its span ( )S b  at auction state k.  Furthermore, since [ ]kb WIN X∈  and 

( )X S b= , the winning combination of sub-auction X consists of bid b alone, i.e., kb LIVE∈  ⇔  

[ ( )] { }kWIN S b b= .  Therefore, as the next corollary indicates, the set of live bids in a 

combinatorial auction is comprised of the winning bids from all sub-auctions. 

Corollary 3a  [ ]k kX
LIVE WIN X

⊆
=∪ I

.   

In other words, at any auction state, the set of all live bids in an auction is the same as the set of 

winning bids from all sub-auctions.  Furthermore, from the bidder’s perspective it would be 

useful to know how much she should bid on an itemset to guarantee that her bid is live.  The next 

theoretical result addresses this issue, i.e., given auction state k and a newly submitted bid 1kb + , 

the following corollary (based on Theorem 3) states the necessary and sufficient condition for the 

deadness of 1kb + .   

Corollary 3b  Given auction state k and new bid 1kb + , such that 1( )kS b X+ = , the following is 
true: 1 1k kb DEAD+ +∈  ⇔  1( ) ( )k kv b VL X+ ≤ . 

Simply put, any new bid on itemset X will be dead if and only if the current winning combination 

of sub-auction X has the same or greater value than the value of the new bid.  Therefore, while 

( )kVL X  was introduced to denote the value of sub-auction X at auction state k, it also represents 

the “deadness level” for any new bids on itemset X at auction state k.  Thus, we will also call 
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( )kVL X  the deadness level of itemset X at auction state k and will denote it as ( )kDL X .  More 

precisely, for any auction state k and itemset X we have: ( ) ( )k kDL X VL X= .  Note that, the 

above corollary can be straightforwardly formulated as the necessary and sufficient condition for 

“liveness” of the new bid 1kb + , i.e., 1 1k kb LIVE+ +∈  ⇔  1( ) ( )k kv b VL X+ > . 

Next, Theorem 4 defines the necessary and sufficient condition for a bid to be a winning 

bid. 

Theorem 4  Given auction state k and new bid 1kb + , such that 1( )kS b X+ = : 

( )1 1 1  ( ) ( ) \k k k k kb WIN v b VL VL X+ + +∈ ⇔ > −I I . 

Let’s denote ( )kWL X  to be a winning level for bids on itemset X at auction state k and define it 

as: ( )( ) ( ) \k k kWL X VL VL X= −I I .  Such definition is appropriate, since (based on Theorem 4) 

1 1k kb WIN+ +∈  if and only if 1( ) ( )k kv b WL X+ > .  Also note that, because of our definition of 

[ ]kWIN ∅ =∅ , Theorem 4 provides the correct result for the special case where the new bid 1kb +  

is placed on the whole auction set I , i.e., when 1( )kS b + = I .  Obviously, the winning level for 

itemset I  should be equal to the current auction revenue ( )kVL I , and from Theorem 4 we 

obtain exactly that: ( )( ) ( ) \ ( ) ( ) ( )k k k k k kWL VL VL VL VL VL= − = − ∅ =I I I I I I , because 

( ) ( ) ( )[ ] 0k kVL v WIN v∅ = ∅ = ∅ = . 

Numerous properties of ( )kDL X  and ( )kWL X  can be derived from their definitions and 

earlier theoretical results.  Some of the more interesting properties are stated in the following 

theorem. 
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Theorem 5  For any auction state k and itemsets X, Y, the following statements are true:  

1. ( ) ( )k kDL X WL X≤ ; 
2. ( ) ( )k kDL WL=I I ; 
3. ( ) ( ) ( \ )k k kWL X DL DL X= −I I� ; 
4. ( ) ( ) ( \ )k k kDL X WL WL X= −I I� ;
5. 1( ) ( )k kDL X DL X+≤ ; 

6. X Y⊆  ⇒ ( ) ( )k kDL X DL Y≤ ; 
7. X Y⊆  ⇒ ( ) ( )k kWL X WL Y≤ ; 
8. X Y =∅∩  ⇒ ( ) ( ) ( )k k kDL X Y DL X DL Y≥ +∪ ; 
9. kb LIVE∈ , s.t. ( )S b X=  ⇒ ( ) ( )kDL X v b= ; 
10. kb WIN∈ , s.t. ( )S b X=  ⇒ ( ) ( )kWL X v b= . 

The above results can provide some interesting insights about combinatorial auctions and bid 

dynamics.  Statement (1) is very intuitive: when bidding on itemset X at auction state k, the 

winning level for X can never be lower than the deadness level of X.  However, in some special 

cases the deadness and winning levels can be equal, e.g., it is always the case for sub-auction I , 

as statement (2) indicates.  In addition, based on statements (9) and (10), we have that 

( ) ( )k kDL X WL X=  for all sub-auctions X that represent a span of a currently winning bid, i.e., 

all sub-auctions X, such that kb WIN∃ ∈  where ( )S b X= .  This is the case, because kb WIN∈  ⇒ 

kb LIVE∈  and, by combining (9) and (10), we have that ( ) ( ) ( )k kWL X v b DL X= = .   

 Furthermore, statements (3) and (4) suggest a certain symmetry (or duality) between 

deadness and winning levels.  Moreover, statements (6) and (7) show that both deadness and 

winning levels are monotonically non-decreasing with respect to the itemset.  In addition, the 

deadness levels are monotonically non-decreasing with respect to the auction state, as presented 

in statement (5); it is easy to show that winning levels do not have the same property.  Also, 

while statement (8) does indicate that the deadness levels are superadditive with respect to the 

itemset, in general the same is not true for winning levels.   

The following lemma provides some intuition about the inherent complexity of 

combinatorial auctions by demonstrating that the number of live bids at a given state of an 

auction can possibly be exponential with respect to auction size N. 
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Lemma 2  In a combinatorial auction of size N: 
1. The number of live bids at any auction state cannot be greater than 2 1N − ; 
2. 2 1N −  is a tight upper bound, i.e., it is possible to have an auction state where there are 

exactly 2 1N −  live bids. 

However, it is easy to see that, while the number of live bids can be exponential, the number of 

winning bids can never be greater than N.  This is the case, because any bid combination 

(including the winning bid combination kWIN ) contains only bids with non-overlapping spans.  

I.e., ( )kS WIN ⊆ I  ⇒ kWIN N≤ ≤I .   

3 Implementing Bidder Support: Data Structures and Algorithms 

3.1  Infrastructure for Bidder Support 

Based on the theoretical results presented earlier in this paper, we have developed data structures 

that are able to store important auction state information (e.g., current deadness and winning 

levels for any itemset X, current winning bid combination) and provide bidders with efficient 

(real-time) access to it.  Specifically, throughout the duration of the auction, we propose to use 

the following two arrays, each containing some information about every itemset X: 

• ValueLevel, where ValueLevel[X] always (i.e., at any auction state k) contains 

the up-to-date ( )kVL X  for itemset X.   

• LastWinBid, where LastWinBid[X] always (i.e., at any auction state k) contains 

the itemset of the last bid (in a chronological sense) that belongs to the current [ ]kWIN X  

for the sub-auction X.   

The space complexity of these data structures is ( )2NO , because there are 2 1N −  possible non-

empty itemsets in an auction of size N.  As discussed in Section 2.3, it is possible to have up to 
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2 1N −  live bids in such an auction (Lemma 2), where the value of each bid represents a deadness 

level for a specific itemset (Theorem 5, statement 9).  Therefore, intuitively, such exponential 

data structures are necessary if we want to guarantee a very fast (i.e., constant-time) access to 

crucial bid information, such as itemset deadness levels, that will be discussed in more detail in 

Section 3.2.  Therefore, for practical purposes we have that N is bounded by 25-30 or so, because 

the array access is most efficient when the whole array fits into the main memory and no OS 

swapping/paging needs to be performed.  However, as discussed in Section 1, it is still a large 

improvement over the previously known complete enumeration approaches.   

There are several challenges related to efficient implementation of bidder support and, 

more specifically, to the above data structures: 

• How to represent data (or more specifically, itemsets) efficiently in the above data 

structures?  This issue is discussed in the remainder of this section.  

• What auction- and bid-related information can be extracted (queried) by bidders from 

these data structures in real-time?  This issue is addressed in Section 3.2.   

• How to keep these (exponential) data structures up-to-date after every single bid in real 

time?  We will address this issue in Section 3.3. 

We use bitmaps to represent itemsets in both of the above arrays.  Bitmaps are commonly used to 

represent set-like data in many different applications, mainly because they allow for a concise 

representation of sets and provide for an efficient (constant-time) implementation of many 

standard set operations (set union, intersection, difference, etc.).  For these reasons, our 

implementation uses a bitmap-based data structure to represent the sets of items specified in the 

bids placed by the auction participants.   
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More specifically, assume I  is the set of items that is being auctioned, where N=I , 

and each item is encoded as a number between 0 and 1N − , i.e., {0,1, , 1}N= −…I .  Then, any 

possible itemset X (i.e., X ⊆ I ) can be represented by a sequence of bits (i.e., a bitmap) of 

length N, where ith bit ( 0,1, , 1i N= −… ) in a bitmap is set to 1 if i X∈ ; otherwise, it is set to 0.  

There exists a straightforward one-to-one correspondence between the set of all subsets of I , 

the set of all bitmaps of length N, and the set of integers {0,1, , 2 1}N −… , since there are 2N  

different bitmaps of length N and each of them constitutes a binary representation of some 

integer between 0 and 2 1N − .  In other words, an arbitrary itemset X corresponds to integer 

2i
i X∈∑ .  Therefore, a standard 4-byte (32-bit) integer can represent any subset of I , where 

32≤I .  The following table provides some examples of itemsets and their corresponding 

bitmaps (and integers) for the case {0,1,2,3}=I . 

Itemset Bitmap5 Integer 
∅ 0000 0 

{0} 0001 1 
{1,2} 0110 6 

{0,2,3} 1101 13 
{0,1,2,3} 1111 15 

 
Table 2.  Illustration of one-to-one correspondence between itemsets, bitmaps, and integers. 

 

As mentioned above, using bitmap representations of sets provides for an efficient 

implementation of many set operations.  In fact, many set operations become can be performed 

in constant-time on bitmaps/integers using bit-wise NOT, AND, OR, and XOR operations that are 

supported by most microprocessors and, consequently, by many programming languages (e.g., 

C, C++).  Let X̂  denote a bitmap/integer representation of itemset X.  Then, the following table 

                                                 
5  Here we use the traditional bitmap representation – the order of bits is right-to-left, i.e., 0th bit is the rightmost one. 
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illustrates how some basic set operations can be implemented using bitmaps and logical bit-wise 

operations.   

Set operation Set notation Bitwise operation 
Intersection X Y∩  X̂  and Ŷ  
Union  X Y∪  X̂  or Ŷ  
Difference \X Y  (assuming X Y⊇ ) X̂  xor Ŷ  
Symmetric difference X Y÷  (i.e., ( \ ) ( \ )X Y Y X∪  ) X̂  xor Ŷ  
Complement X  (i.e., \ XI ) X̂  xor Î  
Membership test a X∈  ? â  and X̂  ≠ 0 ? 
Subset test X Y⊆  ? X̂  and Ŷ  = X̂  ? 
Empty set test X =∅  ? ˆ 0X =  ? 
 

Table 3.  Implementing basic set operations using bitmaps. 
 

3.2  Effective Infrastructure Querying: Obtaining Auction Information in Real-Time 

Assuming our data structures contain up-to-date information (we will discuss how to update 

them effectively in Section 3.3), below are examples of some scenarios that may be of interest to 

bidders (as well as auctioneers) and their corresponding queries/calculations that are derived 

directly from the theoretical results presented earlier in this paper.  Note, that in the examples 

below we use the notation of itemsets and set operations (instead of bitmaps and bitwise logical 

operations) for better clarity.   

Example 3.  Obtaining the current winning level for some itemset, e.g., “How much should I 
bet on itemset X in order for my bid to be a winning bid?”  

Query: ValueLevel[I] – ValueLevel[I\X] 
This query is derived directly from the definition of the winning level and Theorem 4. 
 
Example 4.  Obtaining the current deadness level for some itemset, e.g., “How much should I 
bet on itemset X in order for my bid not to be a dead bid?”   

Query: ValueLevel[X] 
This query is derived directly from the definition of the winning level and Corollary 3b. 
 



 

19 

Example 5.  Obtaining the current revenue of the auction, i.e., “What would the total revenue 
be if the auction ended right now?”   

Query: ValueLevel[I] 
This query is derived directly from the definition of the auction revenue. 

The computational complexity of the above three queries is O(1) (in practice, no more than 

several microseconds), since they only use simple array lookups.   

Example 6.  Obtaining the winning bid combination, i.e., “Which itemsets comprise the 
current winning bid combination?”  The following query/procedure prints the spans (itemsets) 
and values of the bids from the currently winning bid combination: 
 (1) Curr = I 

(2) While LastWinBid[Curr] ≠ ∅ Do  
(3)  Print LastWinBid[Curr], ValueLevel[LastWinBid[Curr]] 
(4)  Curr = Curr\LastWinBid[Curr]  
(5) End While 

The above algorithm is derived from Theorem 2, i.e., on the fact that a winning combination of 

any sub-auction X can be “decomposed” into the latest winning bid b and the winning bids of the 

“complement” auction \ ( )X S b .  The computational complexity of this algorithm is ( )kO WIN , 

which is minimal, because the same computational complexity is needed just to print the winning 

bid combination.  In the worst case, this complexity is ( )O N , i.e., linear in the number of items 

in the auction, since kWIN N≤ , as discussed earlier.  Note that, since N is usually less than 30 

or so because of the real-life space complexity restrictions mentioned earlier, the winning bid 

allocation determination is also extremely efficient.   

Also note, that the above algorithm can be straightforwardly adapted to find the winning 

bid combination for any sub-auction X (not just for the entire auction set I ), in case such 

information is requested.  For this purpose, simply replace I  with X on line 1 in the above 

algorithm. 
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3.3  Incremental Infrasture Update  

The incremental update of data structures is arguably the most crucial part of the proposed 

infrastructure – if we can update the auction state information effectively, then bidder-based 

queries can be performed in constant or near-constant time.  Assume that we have the state k of 

the auction and all data structures contain up-to-date values, i.e., ValueLevel[X] = ( )kVL X  

and LastWinBid[X] contains the itemset of the last winning bid for sub-auction X.  Let 1kb +  

be a new bid that is submitted to the auction.  Furthermore, let S and v be the span and value of 

bid 1kb + , i.e., 1( )kS S b +=  and 1( )kv v b += .  We will assume that 1 1k kb LIVE+ +∈ , because, as 

demonstrated in Section 3.2 (Example 4), it takes one array lookup to retrieve the deadness level 

for any itemset, i.e., it only takes a constant time to make sure whether an incoming bid is dead, 

in which case no update is needed and the bid can simply be discarded.  Then, the data structures 

are updated for auction state ( 1k + ) as follows: 

 Input: new live bid 1kb +  represented by its span S and value v. 
 (1) For all X⊇S  
 (2)  CandidateValue = v + ValueLevel[X\S] 
 (3)  If CandidateValue > ValueLevel[X] Then  
 (4)   ValueLevel[X] = CandidateValue 
 (5)   LastWinBid[X] = S 
 (6)   End If 
 (7) End For 

This algorithm draws directly from the theoretical results presented earlier in this section (mainly 

from Theorems 1 and 2).  More specifically, based on Theorem 1, new bid 1kb +  does not affect 

the winning combination of any sub-auction X, such that 1( )kX S b +| .  Therefore, as line 1 

indicates, only sub-auctions 1( )kX S b +⊇  have to be considered.  Moreover, based on Theorem 2, 

new bid 1kb +  can affect the winning combination of sub-auction 1( )kX S b +⊇  only if 

[ ] { } [ ]1 1\ ( )k k k kWIN X b WIN X S b+ +≺ ∪ .  Consequently, based on the definition of ≺  and also on 
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the fact that bid combination [ ]kWIN X  precedes { } [ ]1 1\ ( )k k kb WIN X S b+ +∪  chronologically, the 

current winning combination of sub-auction X will change (i.e., 1[ ] [ ]k kWIN X WIN X+ ≠ ) only if 

( )1 1( ) ( ) \ ( )k k k kVL X v b VL X S b+ +< +    Lines 2-3 in the above algorithm perform this check, and, if 

required, both of the data structures are updated on lines 4-5.  Specifically, line 4 updates 

ValueLevel[X] with the new revenue of sub-auction X, i.e., the value of the new winning 

combination { } [ ]1 1\ ( )k k kb WIN X S b+ +∪ .  Also, line 5 updates LastWinBid[X] with the span 

of the last winning bid, i.e., 1( )kS b + . 

The computational complexity of the above algorithm is ( )| |2N SO − , because | |2N S−  is the 

number of all possible supersets of S and only a constant amount of work is needed for each 

superset.  To loop through all supersets X efficiently (in the For loop above), we use loopless 

Grey binary code generation approach (Bitner et al. 1976), which takes only a constant amount 

of time to calculate the next superset during each iteration.  We present the experimental 

performance results of this algorithm in the next section. 

4 Experimental Results   

As mentioned earlier, problem spaces with more than a dozen items are considered too complex 

for winner determination problem using complete enumeration approaches and the 

computational performance of such algorithms is reported to be unsatisfactory for real-time use 

(de Vries and Vohra 2003).  However, our implementation of the complete enumeration based 

approach, presented in sections 3 and 4, is able to handle much larger auction sizes (25-30) on a 

relatively obsolete machine. 6 

                                                 
6  All experiments were performed on a Pentium III computer with 256 MB RAM running Linux operating system. 
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Below we present some performance results of our algorithm that not only computes 

winners but incrementally updates the comprehensive auction information (stored in 

ValueLevel and LastWinBid arrays) after each bid in real time.  As discussed in Section 

3.2, this information can be used to instantly determine current winners as well as various other 

bid-related characteristics (deadness, winning levels) at any time during the course of the 

auction.  

 We were extremely interested in the real-time capabilities of our approach, and, 

therefore, we performed a “throughput” test for our incremental update algorithm.  In other 

words, given an auction set and a large number of incoming bids, we wanted to measure the time 

it would take for our incremental update algorithm to have the ValueLevel and 

LastWinBid data structures completely up-to-date after each and every bid.  Since we were 

not aware of any publicly available large-scale (i.e., with tens of thousands or more bids) real-life 

bidding data sets, we have generated such data sets ourselves using (a) our own ad hoc random 

bid generator and (b) the Combinatorial Auction Test Suite (CATS) by Leyton-Brown, Pearson, 

and Shoham (2000), which has been used previously in combinatorial systems literature for 

testing and benchmarking winner determination algorithms.   

 Table 4 presents the “throughput” test for our incremental update algorithm for the set of 

500,000 randomly generated bids using our own ad hoc bid generator.  The bids were generated 

using several simple schemes:  

• [Random span, random value]  For each bid in a data set, both the bid span and the bid 

value were generated independently, i.e., both entities were picked uniformly at random 

from a fixed range of values independently of each other and of the previous bids in a 

data set;  
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• [Random span, proportional value]  For each bid in a data set, the bid span was generated 

at random; however, the bid value was proportional to the size of the span, i.e., larger bid 

values were generated for larger itemsets;  

• [Dynamic span (p=1/2 and p=1/3), proportional value]  For each bid in a data set, the 

bid span was generated dynamically by choosing an item at random and adding further 

items to it with “stopping” probability p (we considered cases where p=1/2 and p=1/3).  

In other words, in the p=1/2 case, on average, 50% of the bids have single-item spans 

(i.e., we stopped after 1 item), 25% of the bids have 2-item spans, 12.5% of the bids 3-

item spans, etc.  Moreover, the bid value was generated to be proportional to the bid span.  

Clearly, the bid spans created in the p=1/3 case tended to be larger than in case p=1/2.  

As Table 4 shows, even in the worst case our auction algorithm needed less than 15 minutes to 

handle 500,000 bids (or less than 1.79 milliseconds per bid, on average), while at the same time 

having to fully update all data structures after every one of the 500,000 bids.   

Bid generation scheme 
Auction 

size Random Span & 
Random Value 

Random Span & 
Proportional Value 

Dynamic Span 
(with p=1/2) & 

Proportional Value 

Dynamic Span 
(with p=1/3) & 

Proportional Value
24 379.6535 893.1401 210.2533 196.7459
20 23.4679 74.1205 11.6509 11.3079
16 1.0362 1.6946 1.0762 1.0368
12 0.5669 0.5763 0.5668 0.5660
8 0.5448 0.5472 0.5508 0.5205
4 0.5443 0.5461 0.5501 0.5682

 
Table 4.  Total incremental update time to handle 500,000 bids (in seconds). 

 
 
Note that, since in the above experiment we generated bids in an ad hoc manner (as described 

earlier), only a very small portion of the 500,000 bids are live upon being placed.  It is one of the 

reasons for such effective performance, because, as discussed earlier, it only takes a constant 

time (i.e., one array lookup) to make sure whether an incoming bid is dead, in which case no 
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update is needed and the bid is simply discarded.  In our experiments, this deadness check was 

always performed in < 0.01 milliseconds (i.e., 0.003-0.006 ms for 24-item auctions, faster for 

smaller auctions).  Therefore, having the comprehensive and up-to-date auction information 

(such as deadness levels) readily available at every state of the auction can actually facilitate the 

better real-time performance. 

 One possible criticism of the above experiment could be that the bidding test sets are 

generated in an ad hoc manner and they are not representative of real-life auction dynamics.  

Therefore, we have also performed a similar “throughput” experiment using the bid sets 

generated by CATS 2.0 software.  CATS software uses a suite of distribution families to 

generate realistic, economically motivated combinatorial bids that are consistent with some real-

world domains (Leyton-Brown et al., 2000).  For example, the paths distribution can be used to 

model bidding behavior for auctions involving truck routes, natural gas pipeline networks, 

network bandwidth allocation, or the use of railway tracks.  Similarly, the regions distribution 

can be used to model bidding behavior for auctions involving real estate, drilling rights, or radio 

spectrum.  Complete details of each distribution are beyond the scope of this paper, the interested 

readers are referred to (Leyton-Brown et al. 2000).   

 Given a combinatorial auction of size 24N = , we used CATS software to generate 30 

bidding scenarios of approximately 2000 bids each for every available distribution (using default 

distribution parameters).  Thus, we had about ≈60,000 bids for each distribution.  As expected, 

CATS software was able to generate live bids much better (i.e., the portion of dead bids was 

much lower compared to our ad hoc bid generating schemes).  However, the average incremental 

update time per bid was still only 19-47 milliseconds (depending on a specific distribution).  

Even in the “perfect information” scenario, i.e., when we looked only at live bids, the average 



 

25 

incremental update time per bid was well under 1 second (107-644 milliseconds, depending on 

the distribution).  Table 5 summarizes the results from this experiment.  

Time (milliseconds) Distribution Total number 
of bids Per bid Per live bid 

arbitrary 60051 33.295 107.494 
arbitrary-npv 60078 29.079 113.509 
arbitrary-upv 60055 35.195 107.648 
matching 60087 47.195 378.059 
paths 60026 30.349 644.410 
regions 60059 20.015 187.477 
regions-npv 60077 19.296 199.354 
regions-upv 60080 20.904 169.926 
scheduling 60268 43.029 231.296 

 
Table 5.  Incremental update for 60,000 “realistic” bids generated using  

CATS software for combinatiorial auctions of size 24N = . 
 
 
Finally, Table 6 describes the relationship between the auction size, the span size of an incoming 

bid, and the time it takes to incrementally update the data structures after the new bid is placed.  

Each number presented in the table is an average of incremental update time for 100 live bids 

with a given span.  Here we only used live bids, because, as discussed earlier, dead bids do not 

incur any updates.  As reflected in Table 6, even for the largest auction the incremental update 

times in worst cases (i.e., for single-item bids) were under 1 second.   

Auction size (N) Bid span  
Size (s) 24 23 22 21 20 18 16 14 12 

1 832.812 421.530 220.249 104.486 52.083 13.456 2.748 0.573 0.143
2 449.981 216.426 112.435 58.350 28.511 7.281 1.443 0.304 0.076
3 257.651 126.297 58.559 31.412 15.549 4.131 0.800 0.167 0.043
4 128.038 66.430 32.859 17.147 8.973 2.143 0.413 0.088 0.022
5 71.041 35.719 18.521 9.017 4.845 1.151 0.213 0.045 0.012
6 36.905 19.754 9.319 5.117 2.570 0.591 0.111 0.025 ***
7 20.149 10.497 5.224 2.541 1.305 0.313 0.061 0.015 ***
8 11.137 5.430 2.825 1.472 0.709 0.161 0.031 *** ***

*** – less than 10 microseconds. 
 

Table 6.  Average incremental update time for “realistic” live bids  
generated using CATS software (in milliseconds). 
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Furthermore, let ( , )T N s  be the time needed to update the state of the auction (of size N) after a 

new live bid (with span of size s) arrives.  Then, based on the empirical results in Table 6, note 

that ( , ) 2 ( , 1)T N s T N s≈ ⋅ +  and ( , ) 2 ( 1, )T N s T N s≈ ⋅ − .  This is consistent with the theoretical 

computational complexity estimation for the incremental update algorithm, discussed in Section 

3.3, i.e., ( )( , ) 2N sT N s O −= .  Therefore, increasing a bid span by one item would reduce the 

average incremental update time approximately by the factor of 2.  Therefore, restricting the bid 

span size (from below) is one of the possible heuristics that the auctioneer could use towards the 

end of the auction (when the bidding activity is typically the most intense) to increase the 

throughput of the proposed infrastructure, if needed.  Obviously, reducing the auction size by 

one item would also would reduce the average incremental update time approximately by the 

factor of 2.   

5 Conclusions and Future Work 

In this paper, we develop new theoretical insights and structural properties of the bidding 

dynamics in combinatorial auctions.  We define new metrics of interest for the bidders such as 

dead and live bids.  We develop theoretical properties of these metrics and their relationships 

with winning bids and winner determination.  Our theoretical results are based on breaking the 

problem down, by using the concept of sub-auction, to quickly identify the bids and allocation 

that are affected by each new bid.  We also develop efficient data structures and algorithms to 

test the effectiveness of our theoretical results and to explore the feasibility of real-time bidder 

support.  Our implementation, essentially, reduces the bidder queries to constant time operations 

that can be performed with at most a couple of array lookups, making the information gathering 

task very efficient and fast.  The more complex task of updating the data structures (i.e., on the 
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arrival of a new live bid) can also be conducted in milliseconds for the auction sizes that were 

tested.  Due to the relative lack of access to real-world combinatorial auction data, we test the 

computational performance of our algorithm by using the CATS package, provided by Leyton-

Brown et al. (2000), that simulates real-world difficult data scenarios.  We also test the algorithm 

using randomly generated data.  All the experiments indicate that our implementation can 

provide real-time bidder support for moderate sized auctions. 

Some areas of future research include exploration of special problem structures and 

support for XOR bids, i.e., where a bidder may be interested in one of several possible itemsets.  

Note, however, that XOR bids are more of a concern in sealed bid combinatorial auctions where 

bidders cannot evaluate the fate of their bids themselves.  In an environment with real-time 

information, bidders can themselves evaluate all the itemsets that are of interest to them and 

place the bids on the itemset that ranks the highest based on their respective objective functions.   

Clearly, an NP-complete problem cannot be solved efficiently without any limitations.  

Our approach approaches the problem from the perspective of number of bids, i.e., since the bids 

can be handled very efficiently, we can support any number of bids during an auction.  However, 

the number of items is limited to 25-30 – although it is still a large improvement over the 

previously known complete enumeration approaches.   In addition, as the technology improves in 

terms of memory and processing speed, we should see an improvement in the number of items as 

well.  A key aspect of our approach is the use of sub-auctions to update the auction-wide 

information.  This artifact can be exploited to create parallel algorithms, increasing the current 

limitation to potentially a larger number while keeping the overall response time reasonable.   
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Appendix A:  Proofs of Main Theoretical Results 

Theorem 1  ( )( )1 1( ) [ ] [ ]k k kX S b WIN X WIN X+ +∀ =| . 

Proof.  Assume 1( )kX S b +| .  Then we have ( 1 1[ ]k kb B X+ +∉ )  ⇒  ( 1[ ] [ ]k kB X B X+= )  ⇒  

( 1[ ] [ ]k kX X+=C C ).  Based on this and the definition of 1[ ]kWIN X+  we immediately have that 

1 1( ) max [ ] max [ ] ( )k k k kWIN X X X WIN X+ += = =≺ ≺C C .        

Theorem 2  ( ) [ ] [ ] { } [ ]( )1 1 1 1( ) max , \ ( )k k k k k kX S b WIN X WIN X b WIN X S b+ + + + ∀ =  ≺ ∪⊇ . 

Proof.  Assume 1( )kX S b +⊇ .  Let 1C  and 2C  be two subsets of 1[ ]k X+C  that are defined as 

follows: { }1 1 1[ ] |k kC C X b C+ += ∈ ∈C , { }2 1 1[ ] |k kC C X b C+ += ∈ ∉C .  Clearly, 1 2C C =∅∩  and 

1 2 1[ ].kC C X+=∪ C   Therefore,  

[ ] [ ]1 1 1 2 1 2[ ] max [ ] max max max , maxk kWIN X X C C C C+ += = =≺ ≺ ≺ ≺ ≺∪C . 

Since { } { }2 1 1[ ] | [ ] [ ]k k k kC C X b C C X X+ += ∈ ∉ = ∈ =C C C , we derive 2max C≺  as follows:  

 2max max [ ] [ ]k kC X WIN X= =≺ ≺ C . 

Furthermore, we have defined 1C  so that ( )( )1 1kC C b C+∀ ∈ ∈ . Based on this, 1max C≺  is:  

 1max C≺  = { }1 1max [ ] |k kC X b C+ +∈ ∈≺ C  

     = { }1 1 1 1{ } max \{ } | [ ],k k k kb C b C X b C+ + + +∈ ∈≺∪ C  

     = { }1 1{ } max | [ ], ( ) ( )k k kb C C X S C S b+ +∈ =∅≺∪ ∩C  

     = { }1 1{ } max [ ] | ( ) \ ( )k k kb C X S C X S b+ +∈ ⊆≺∪ C  

     = [ ]1 1{ } max \ ( )k k kb X S b+ +≺∪ C  = [ ]1 1{ } \ ( )k k kb WIN X S b+ +∪ . 

Hence, we have that [ ] [ ] { } [ ]1 1 1max , \ ( )k k k k kWIN X WIN X b WIN X S b+ + + =  ≺ ∪ .   
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Lemma 1  For any auction state k and itemsets X, Y, the following statements are true: 
1. 1( ) ( )k kVL X VL X+≤ ; 
2. ( ) ( )( ) ( )k kX Y VL X VL Y⊆ ⇒ ≤ ; 

3. ( ) ( )( ) ( ) ( )k k kX Y VL X VL Y VL X Y=∅ ⇒ + ≤∩ ∪ . 

Proof.  1.  By definition, ( ) ( ) [ ]( ) [ ] max [ ] max ( )
kk k k C XVL X v WIN X v X v C∈= = =≺ ^^ .  Similarly, 

11 [ ]( ) max ( )
kk C XVL X v C
++ ∈= ^ .  Since 1[ ] [ ]k kX X+⊆^ ^ , we have 1( ) ( )k kVL X VL X+≤ . 

2.  Similarly to (1), [ ]( ) max ( )
kk C XVL X v C∈= ^  and [ ]( ) max ( )

kk C YVL Y v C∈= ^ .  Since X Y⊆ , we 

have that ( ) ( )k kVL X VL Y≤ . 

3.  X Y =∅∩  ⇒ ( ) ( )[ ] [ ]k kS WIN X S WIN Y =∅∩  ⇒ ( )[ ] [ ] [ ]k k kWIN X WIN Y X Y∈∪ ^ ∪  ⇒ 

( ) ( )[ ] [ ] max [ ]k k kv WIN X WIN Y v X Y≤ ≺∪ ^ ∪  ⇒ ( ) ( ) ( )k k kVL X VL Y VL X Y+ ≤ ∪ .   

Theorem 3  Given auction state k and bid kb B∈  such that ( )S b X= , we have:  

kb LIVE∈  ⇔  [ ]kb WIN X∈ . 

Proof.  ⇒ Assuming kb LIVE∈ , by definition we have that l kB B∃ ⊇  such that lb WIN∈ .  

Suppose otherwise, [ ]kb WIN X∉ , and therefore, { } [ ]kb WIN X≺ .  Let W be the following bid 

combination: ( )\{ } [ ]l kW WIN b WIN X= ∪ .  Since ( )\{ } [ ]l kWIN b WIN X =∅∩ , W is a valid bid 

combination, i.e., lW ∈C .  Furthermore, the { } [ ]kb WIN X≺  order on bid combinations implies 

that  ( ) ( ){ } \{ } [ ] \{ }l k lb WIN b WIN X WIN b∪ ≺ ∪ .  Hence, we have lWIN W≺ , where lW ∈C .  

Therefore, lWIN  cannot be a winning combination at stage l.  Contradiction.  ⇐ Assuming 

[ ]kb WIN X∈ , we have that { } [ ]kb WIN X=  and, therefore, ( ) ( )kv b VL X= .  Consider auction 

state ( 1k + ) and choose a new bid 1kb +  such that 1( ) \kS b X+ = I  and 1( ) ( ) ( )k k kv b VL VL X+ > −I .  

We can rewrite the previous inequality as: ( ) ( )1 1[ ] ( ) [ \ ( )]k k k kv WIN v b v WIN S b+ +< +I I .  By 
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directly applying Theorem 2, we then have that 1 1{ } [ ]k k kWIN b WIN X+ += ∪ .  Since [ ]kb WIN X∈ , 

we have that 1kb WIN +∈ .  Then, by definition, kb LIVE∈ .      

Corollary 3a  [ ]k kX
LIVE WIN X

⊆
=∪ I

.   

Proof.  Suppose, kb LIVE∈ .  From Theorem 3 we have that [ ( )]kb WIN S b∈ , and, since 

( )S b ⊆ I , we have [ ]kX
b WIN X

⊆
∈∪ I

.  Conversely, if [ ]kX
b WIN X

⊆
∈∪ I

, then there must 

exist sub-auction X, ( )X S b⊇ , such that [ ]kb WIN X∈ .  From Lemma 3 (see Appendix B), we 

have that [ ( )]kb WIN S b∈ .  Furthermore, by applying Theorem 3 we get kb LIVE∈ .    

Corollary 3b  Given auction state k and new bid 1kb + , such that 1( )kS b X+ = , the following is 
true: 1 1k kb DEAD+ +∈  ⇔  1( ) ( )k kv b VL X+ ≤ . 

Proof.  ⇒  If 1 1k kb DEAD+ +∈  then from Theorem 3 we have that 1 1[ ]k kb WIN X+ +∉  and, therefore 

(based on Theorem 2), 1[ ] [ ]k kWIN X WIN X+ = .  Consequently 1 1[ ]k kb WIN X+ +≺ , which implies 

1 1( ) ( ) ( )k k kv b VL X VL X+ +≤ = .  ⇐  Conversely, if 1( ) ( )k kv b VL X+ ≤ , we have that 

1 [ ]k kb WIN X+ ≺ , since [ ]kWIN X  precedes 1kb +  chronologically.  Therefore, based on Theorem 2, 

1 1[ ]k kb WIN X+ +∉  and, from Theorem 3, 1 1k kb DEAD+ +∈ .       

Theorem 4  Given auction state k and new bid 1kb + , such that 1( )kS b X+ = : 

( )1 1 1  ( ) ( ) \k k k k kb WIN v b VL VL X+ + +∈ ⇔ > −I I . 

Proof.  From Theorem 2 we have: 1 1k kb WIN+ +∈  if and only if 1{ } [ \ ]k k kWIN b WIN X+≺ ∪ I .  

Based on the definition of strict total order ≺  and taking into account that combination kWIN  

chronologically precedes bid combination 1{ } [ \ ]k kb WIN X+ ∪ I , we have that 

( )1( ) ( ) \k k kVL v b VL X+< +I I .          
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Theorem 5  For any auction state k and itemsets X, Y, the following statements are true:  

1. ( ) ( )k kDL X WL X≤ ; 
2. ( ) ( )k kDL WL=I I ; 
3. ( ) ( ) ( \ )k k kWL X DL DL X= −I I� ; 
4. ( ) ( ) ( \ )k k kDL X WL WL X= −I I� ;
5. 1( ) ( )k kDL X DL X+≤ ; 

6. X Y⊆  ⇒ ( ) ( )k kDL X DL Y≤ ; 
7. X Y⊆  ⇒ ( ) ( )k kWL X WL Y≤ ; 
8. X Y =∅∩  ⇒ ( ) ( ) ( )k k kDL X Y DL X DL Y≥ +∪ ; 
9. kb LIVE∈ , s.t. ( )S b X=  ⇒ ( ) ( )kDL X v b= ; 
10. kb WIN∈ , s.t. ( )S b X=  ⇒ ( ) ( )kWL X v b= . 

Proof.   

1.  Based on Lemma 1, ( ) ( \ ) ( )k k kVL VL X VL X≥ +I I .  Hence, ( ) ( ) ( \ )k k kVL X VL VL X≤ −I I  

and, from definitions of ( )kDL X  and ( )kWL X , we have ( ) ( )k kDL X WL X≤ .   

2.  By definition, ( ) ( )k kDL VL=I I  and ( ) ( ) ( ) ( )k k k kWL VL VL VL= − ∅ =I I I .  

3.  Immediate from definitions, i.e., ( ) ( ) ( \ ) ( ) ( \ )k k k k kWL X VL VL X DL DL X= − = −I I� I I� . 

4.  Immediately from (3), only replace X  by \ XI  and ( )kDL I  by ( )kWL I  (based on 2). 

5.  From Lemma 1, 1 ( ) ( )k kVL X VL X+≤ .  Hence, 1( ) ( )k kDL X DL X+≤ . 

6.  From Lemma 1,  X Y⊆  ⇒  ( ) ( )k kVL X VL Y≤ .  Hence, ( ) ( )k kDL X DL Y≤ . 

7.  Similarly to (6),  X Y⊆  ⇒ \ \Y X⊆I I  ⇒ ( \ ) ( \ )k kVL Y VL X≤I I  ⇒ 

 ( ) ( \ ) ( ) ( \ )k k k kVL VL X VL VL Y− ≤ −I I I I  ⇒ ( ) ( )k kWL X WL Y≤ . 

8.  From Lemma 1, X Y =∅∩  ⇒  ( ) ( ) ( )k k kVL X Y VL X VL Y≥ +∪  ⇒ 

 ( ) ( ) ( )k k kDL X Y DL X DL Y≥ +∪ . 

9.  From Theorem 3 we have that [ ]kb WIN X∈  or, in other words, [ ] { }kWIN X b= .  Hence, 

( ) ( )kv b VL X=  and, therefore, ( ) ( )kv b DL X= .   

10.  kb WIN∈  ⇒ { } [ \ ]k kWIN b WIN X= ∪ I  ⇒ ( ) ( ) ( \ )k kVL v b VL X= +I I .  Hence, 

( ) ( ) ( \ )k kv b VL VL X= −I I  and, therefore, ( ) ( )kv b WL X= .      
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Lemma 2  In a combinatorial auction of size N: 
1. The number of live bids at any auction state cannot be greater than 2 1N − ; 
2. 2 1N −  is a tight upper bound, i.e., it is possible to have an auction state where there are 

exactly 2 1N −  live bids. 

Proof.   

(1)  A set of size N can have 2 1N −  different non-empty subsets.  Therefore, in a combinatorial 

auction of size N there can be 2 1N −  different bid spans (corresponding to each non-empty 

subset).  Obviously, there can be only one live bid with given span X.  (If there are multiple bids 

submitted with the same span, only the one with the largest value can possibly be a live bid.  If 

there are several bids with the same span and the same largest value, only the earliest of them 

can possibly be a live bid.)  Therefore, the number of live bids is always less than or equal to 

2 1N − .  

(2)  Suppose that, exactly one bid has been submitted on each possible itemset (hence, there are 

2 1N −  bids), where the value of the bid on itemset X was set as 2 | | 1X⋅ − .  Then the value of any 

bid combination C can be expressed as: ( ) ( ) 2 | ( ) | 1 2 | ( ) | | |
b C b C

v C v b S b S C C
∈ ∈

= = ⋅ − = ⋅ −∑ ∑ .  

By maximizing 2 | ( ) | | |S C C⋅ −  we derive that the current winning combination consists of a 

single bid on the whole auction set and has value 2 1N⋅ − .  It is easy to see that all these 2 1N −  

bids are live.  Suppose otherwise, i.e., there exists bid b (where ( )S b X=  and ( ) 2 | | 1v b X= ⋅ − ) 

that is dead.  Choose a brand new bid b′ , such that ( ) \S b X′ = I  and ( ) 2 2 | |v b N X′ > ⋅ − ⋅ .  

Then, bid combination { , }C b b′ ′=  is a new winning combination, because its value 

( ) ( ) ( ) 2 1 2 2 2 1v C v b v b X N X N′= + > ⋅ − + ⋅ − ⋅ = ⋅ − .  Since b C′∈ , by definition b is live. 

Contradiction.            
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Appendix B:  Suplementary Theoretical Results 

Lemma 3  For any bid kb B∈  and any sub-auction ( )X S b⊇ : [ ]kb WIN X∈  ⇒ [ ( )]kb WIN S b∈ .   

Proof.  Assume that ( )X S b≠  (the case ( )X S b=  is straightforward).  Suppose otherwise, i.e., 

[ ( )]kb WIN S b∉  and, therefore, { } [ ( )]kb WIN S b≺ .  Consider ( )[ ] \{ } [ ( )]k kW WIN X b WIN S b= ∪ .  

Since ( )[ ( )] ( )kS WIN S b S b⊆ , W is a valid bid combination for sub-auction X, i.e., [ ]kW X∈^ .  

Furthermore, { } [ ( )]kb WIN S b≺  ⇒ ( ) ( ){ } [ ] \{ } [ ( )] [ ] \{ }k k kb WIN X b WIN S b WIN X b∪ ≺ ∪  ⇒ 

[ ]kWIN X W≺ , where [ ]kW X∈^ .  Hence, [ ]kWIN X  is not a winning bid combination.  

Contradiction.            

 


