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Abstract

This paper analyzes monopoly pricing for a network good, with heterogeneous customer preferences over

both the intrinsic value and the network value of the product. Network effects that depend on gross

consumption, individual consumption, and customer type are analyzed. It is shown that network effects

generally raise total prices, and may either raise individual consumption for all customer types, lower it for

a subset of customer types, or leave it unchanged. These differences highlight the nature of the trade-off

between value creation and price discrimination when pricing network goods. The monopolist typically

captures all the direct value from the network effects. Customer surplus may increase for those whose

individual consumption increases. Consequently, network effects may actually harm low-usage customers,

and skew the distribution of surplus towards higher-end users. When the monopolist prices to deter entry,

the socially optimal outcome is obtained when network value is constant across customers. On the other

hand, when network value is high and depends on individual consumption, the threat of entry has no effect

on total welfare, and merely redistributes surplus between the monopolist and the customers. In other cases,

optimal consumption increases for a subset of lower-type customers, which mitigates the skew in surplus

across customers. Some policy implications of the results are also discussed.
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1 Introduction

This paper analyzes optimal monopoly pricing under incomplete information for a good that dis-

plays positive network effects (henceforth called a network good). The principal goals of the paper

are to characterize the optimal contract and study consumption patterns, profits and welfare, for

different kinds of network effects, and under the potential threat of entry.

In standard models of network goods (Katz and Shapiro, 1985, Farrell and Saloner, 1985), it is

assumed that each customer purchases a maximum of one unit of the product, that the value of the

network effect is proportionate to the total size of the product’s eventual user base, and that all

customer benefit equally from the network effects. However, there are many network goods which

are consumed in variable quantities, and for which the magnitude of the network effect may depend

on the total quantity consumed, rather than simply the total number of adopters. In addition, the

value each customer get from the network effects may depend on their individual consumption, as

well as the intrinsic value they place on the product.

To illustrate the relevance of these observations, consider the purchase of PC operating systems

software (a widely used example of a network good) by corporate customers. The simplest pricing

problem faced by a seller in this market is one of choosing a pricing schedule, where quantity is

measured by number of user licenses, and each corporate customer purchases a variable quantity of

licenses. The network effects are caused largely by the higher availability and quality of comple-

mentary goods like applications software (word processors, spreadsheet programs, web browsers),

as the total number of PC’s running the operating system increases. Consequently, the magnitude

of the network effects are proportionate to the total number of licenses sold (the gross consumption,

rather than simply the number of corporations who adopt the OS). Moreover, a corporation which

has a higher number of licenses for the operating system benefits more from the increased quality

and availability of the applications — in other words, the value realized from the network effects

by any corporate customer also depends on their individual consumption. Finally, even at equal

levels of individual consumption, companies who place a higher value on each additional licence

(or quantity unit) — for instance, those companies whose employees use their individual copies of

the operating system more — are likely to place a higher value on the availability of a wider range

of applications. Therefore, the value realized from the network effects by any individual corporate

customer may also depend on the customer’s type1.

A similar argument can be made for back-end or enterprise software used in variable quantities

by different companies (Oracle’s database software, Siebel’s CRM solution being two examples),
1In addition, there is a positive externality driven by value from interoperability, which is far more important

within an organization than across companies, and is therefore influenced more by individual consumption.
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or for networking equipment such as routers, wherein the network effect is driven by the ease with

which one can find qualified support or administration engineers, trained employees, or compatible

equipment. Network products and services provided directly to individuals consumers may also

display the same properties. For example, electronic marketplaces like eBay are widely recognized

as displaying positive network effects, which stem from increased liquidity, as well as a wider

availability of robust systems supporting marketplace services such as reputation, escrow, payment,

settlement and dispute resolution. The magnitude of the network effects increases not just with

the number of participants in the market, but with the extent to which each participant actually

buys and sells; moreover, an individual who participates more realizes higher benefits from them.

Even for products used as canonical examples of network goods, such as telephone service, usage

varies across consumers, network effects dependent on total consumption as well as installed base,

users with higher consumption levels benefit more from the network effects, and pricing is often

nonlinear, based on consumption, rather than just membership.

The first part of this paper extends the standard models of network goods by characterizing the

optimal nonlinear pricing schedule for a monopolist selling a network good whose network effects

depend on gross realized consumption, and whose individual customers may realize heterogeneous

value from the network effects. Three cases are analyzed successively — where the value to each

customer from the network effects depends on just gross consumption, then on both gross con-

sumption and individual consumption, and finally, on gross consumption, individual consumption

and customer type. Interestingly, the changes in consumption induced by the network effects varies

substantially across the cases — there may be no change in individual consumption for any customer

type, an increase in individual consumption across all types, or a reduction in consumption for a

fraction of customer types. Examining the welfare properties of the optimal contract in each of

these cases (relative to a product with no network effects) suggests that total surplus changes on

account of two effects — the direct impact of the value of the network effects, and the indirect effect

due to changes in consumption induced by the presence of the network effects. In general, both

effects are non-negative; however, the distribution of the surplus between the monopolist and the

customers varies across the three cases.

The monopoly model described above is motivated by the fact that markets with positive

network effects are often natural monopolies. However, there has been substantial recent interest

in whether (and how) the potential threat of entry affects the monopoly pricing of network goods. In

the recent U.S. versus Microsoft case, both parties agreed that Microsoft’s pricing was not consistent

with monopoly profit maximization, and Schmalensee (1999) argued that Microsoft underprices in

order to reduce the desirability of entry by competing firms into the market for operating systems.

Fudenberg and Tirole (2000) develop a formal model of limit pricing that supports this argument,
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in which installed base plays an entry-deterring role analogous to that of excess capacity (Spence,

1977, Dixit, 1980).

The second part of this paper proposes and analyzes an alternate representation, in which the

costless threat of entry results in the monopolist being able to charge each customer no more than

the value generated by their product’s network effects. In other words, to successfully deter entry,

each customer must get surplus equal to at least the maximum intrinsic value they could get from

a competing product. This introduces the idea that network value may play the role of being the

primary source of profits for a monopolist who prices to successfully deter entry. By construction,

in this model, the monopolist cannot extract any of the intrinsic value of the product. One would

therefore expect the optimal contract to induce a substantial increase in consumption, relative to

the model with no entry threat. Surprisingly, it is shown that consumption changes are often zero,

that the monopolist may still design contracts that share some of the surplus generated by the

network effects, even when the network value is not type-dependent, and that any increases in total

surplus are almost always due to consumption increases of a lower subset of types. These optimal

contracts are contrasted with those obtained in the absence of the entry threat, and in one case, it

is shown that the outcome is socially efficient.

This paper draws from and adds to two lines of research. The first is the literature on the

monopoly pricing of network goods (Rohlfs, 1974, Economides, 1996b, Cabral et. al., 1999, Fu-

denberg and Tirole, 2000, among others). The idea of a fulfilled-expectations equilibrium, which

is based on one notion of rational-expectations equilibrium under uncertainty (Radner, 1982), and

was introduced into the network externalities literature by Katz and Shapiro (1985) in the context

of Cournot competition, is extended to the case of heterogeneous customers purchasing variable

quantities. Modeling network goods for which the network effects depend on gross consumption

rather than simply network size is new, as is the analysis of heterogeneity in the value of the network

effects across customers, based on both individual consumption, and on customer type.

The second line of research is the price screening literature — the specification of the model is

a modified version of the standard set-up with a one-dimensional type (Maskin and Riley, 1984),

also relies on results from a recent generalization by Jullien (2000) that permits type-dependent

participation constraints, and has some outcomes that have a similar structure to duopoly results

in Rochet and Stole (2001). The paper contributes new results to the price screening theory

by characterizing how positive network effects of different kinds affect optimal nonlinear pricing,

and by establishing conditions under which fulfilled-expectations equilibria involving the optimal

contracts exist and are unique. It complements recent work by Segal and Whinston (2001), and by

Jullien (2001), that examine different problems of optimal contracting in the presence of network

externalities. A related line of research is the literature on optimal monopoly pricing with negative
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consumption externalities, specifically in the context of congestion in queuing systems (Mendelson,

1985, Dewan and Mendelson, 1990, Mendelson and Whang, 1990, Westland, 1992).

The rest of this paper is organized as follows. Section 2 specifies the model, and Section 3

illustrates the intuition behind some results in the context of an example with two customer types.

Section 4 presents the analysis of the general monopoly model, and Section 5 analyzes the monop-

olist’s problem with the costless threat of entry. Both sections 4 and 5 examine the consumption

changes induced by network effects, and some welfare properties of the optimal contracts. Section

6 provides a discussion of the results, the model’s assumptions, and concludes with an outline of

open research questions.

2 Model

2.1 Firm and customers

A monopolist sells a homogeneous product which may be used by consumers in varying quantities.

The creation of the product may have involved expending a fixed cost, which is assumed to be

sunk, and has no bearing on the optimal pricing. The variable cost of production is assumed to be

zero2.

Customers are heterogeneous, indexed by their type θ ∈ [θ, θ]. The monopolist does not observe
the type of any customer, but knows F (θ), the probability distribution of types in the customer

population. F (θ) is assumed to be strictly increasing and absolutely continuous, and therefore

the corresponding density function f(θ) exists and is strictly positive for all θ ∈ [θ, θ]. In addition,
1−F (θ)
f(θ) , which is the reciprocal of the hazard rate, is assumed to be non-increasing for all θ. Each

customer knows their own type θ.

The preferences of a customer of type θ are represented by the linearly separable utility function

V (q, θ, Q, p) = U(q, θ) +W (q, θ,Q)− p, (1)

where q is the quantity of the product used by the customer (often referred to as individual con-

sumption), Q is the total quantity of the product used by all consumers in the market (often referred

to as the gross consumption) and p is the total price paid by the customer. The total number of

customers in the market is normalized to 1.

For a customer of type θ, the intrinsic value function U(q, θ) represents the intrinsic value of

consumption of q units of the product, and the network value function W (q, θ,Q) represents the
2This assumption is made to reflect that fact that a number of network goods are digital. The analysis is largely

similar if one introduces a positive and convex cost function c(q). This is discussed more extensively in Section 6.2.
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value that the customer gets from the product’s network effects, when their individual consumption

is q and the gross consumption is Q.

The intrinsic value function U(q, θ) is assumed to have the following properties:

1. U11(q, θ) < 0, U2(q, θ) > 0, U12(q, θ) > 0.

2.
d

dθ
(
−U11(q, θ)
U1(q, θ)

) < 0, U122(q, θ) ≤ 0, U112(q, θ) ≥ 0.

3. α(θ) = argmax
q
U(q, θ) is finite and unique for all θ. U1(q, θ) > 0 for q < α(θ), and U1(q, θ) < 0

for q > α(θ).

Numbered subscripts to functions denote partial derivatives with respect to the corresponding

variable. The first set of properties — strict concavity in q, increasing intrinsic value with type, and

the Spence-Mirrlees single-crossing condition — are standard. The second set of properties assume

decreasing absolute risk aversion (which is standard in models of nonlinear pricing), marginal utility

that is concave in type θ (which is a standard assumption that ensures that the optimal contract

separates types), and that the concavity of U with respect to q does not increase with type3 (which

ensures that the profit function is quasiconcave in quantity).

The third set of properties simply state that there is a consumption level beyond which the

intrinsic value of the product decreases. It reflects the reality that customers consume a finite

quantity of any product, even if the marginal price of additional consumption is zero. This is

because intrinsic value from usage is typically bounded by a constraint on some related resource

— attention or computing power being two common examples — and the implicit presence of a

substitute use for this resource. Analogously, sometimes the increased consumption of the product

may necessitate the purchase of additional costly complementary assets (like computer hardware

for software, for instance)4.

The network value function W (q, θ, Q) is assumed to have the following properties:

1. W1(q, θ, Q) ≥ 0, W2(q, θ, Q) ≥ 0, W3(q, θ, Q) ≥ 0, W11(q, θ, Q) ≤ 0, W12(q, θ,Q) ≥ 0.

2. W112(q, θ,Q) ≥ 0, W122(q, θ, Q) ≤ 0, W123(q, θ,Q) ≥ 0.

3. β(θ,Q) = argmax
q
[U(q, θ) +W (q, θ,Q)] is finite and unique for every θ, Q.

The value from the product’s network effects are therefore non-decreasing in individual consump-

tion, type and gross consumption, (weakly) concave in individual consumption, and the marginal

3If U1(q, θ) > 0, then U112(q, θ) ≥ 0 implies that d
dθ
(−U11(q,θ)

U1(q,θ)
) < 0

4See Sundararajan (2002), Section 4, for more discussion and examples. Also Section 6.2 of the current paper

discusses relaxing this assumption in the presence of convex costs.
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network valueW1(q, θ,Q) is non-decreasing in type. In addition, even after factoring in the network

value, all customers consume a finite quantity of the product even if the marginal price is zero. In

all the cases we analyze in detail, W is linear in q, satisfying many of the the conditions above

trivially.

The source of the network effects are not modeled explicitly. The model therefore adopts what

Economides (1996a) calls the ‘macro’ approach.

Finally, each customer of type θ is assumed to have reservation utility Û(θ) ≥ 0. The functions
F (θ), U(q, θ), W (q, θ,Q), and Û(θ) are common knowledge.

2.2 Sequence of events

The interaction between the monopolist and their customers is according to the following sequence:

1. The monopolist announces their pricing schedule, which specifies a total payment p(q) for

each level of individual consumption q.

2. Customers observe p(q), and form an expectation about what the gross consumption under

this pricing schedule will be. All customers have access to the same relevant information5,

and are assumed to form the same expectation QE. The monopolist knows what expectation

of gross consumption the pricing schedule p(q) will induce.

3. Based on their type θ and the expectation of gross consumptionQE , each customer determines

their optimal individual consumption q̃(θ, QE) = argmax
q
U(q, θ)+W (q, θ,QE)− p(q). If the

customer gets at least their reservation utility, that is, if:

U(q̃(θ,QE), θ) +W (q̃(θ, QE), θ, QE)− p(q̃(θ, QE)) ≥ Û(θ), (2)

then the customer chooses to consume q̃(θ,QE). If not, the customer does not participate,

and purchases zero quantity

4. The monopolist gets a payoff of Z
θ∈Θ

p(q̃(θ, QE))f(θ)dθ, (3)

where Θ = {θ : U(q̃(θ,QE), θ) + W (q̃(θ,QE), θ, QE) − p(q̃(θ,QE)) ≥ Û(θ)} is the set of
participating types. Each participating customer gets a payoff of

U(q̃(θ,QE), θ) +W (q̃(θ, QE), θ, QA)− p(q̃(θ, QE)), (4)
5The customer’s unique knowledge of their own type does not affect their expectation of gross consumption, which

is completely determined by f(θ), p(q) and the functions U(q, θ), W (q, θ, Q), and Û(θ) (all of which are common

knowledge at this stage).
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where

QA =

Z
θ∈Θ

q̃(θ,QE)f(θ)dθ (5)

is the actual realized gross consumption. Each customer that does not participate gets a

payoff of Û(θ).

2.3 Contracts

The functions p(q) and q̃(θ,QE) are used merely to illustrate the sequence of interaction precisely,

and will not be derived or used in the subsequent analysis. This is because the revelation principle

ensures that we can restrict our analysis to direct mechanisms. This subsection defines the different

contracts, all of which are direct mechanisms, that are used in subsequent analysis.

A simple exposition of mechanism design, the revelation principle and its applications to pricing

can be found in chapter 7 of Fudenberg and Tirole (1991). In particular, section 7.2 describes the

revelation principle, and section 7.1 discusses a non-linear pricing example.

To simplify notation, the definition of the following contracts is based on the assumption of

full participation — that is, that all customers find it optimal to purchase under the contract, if

the direct mechanism specifies a non-negative allocation for their type. In the models analyzed in

sections 4 and 5, full participation is always optimal for the monopolist.

2.3.1 Q-feasible contracts

For any expectation of gross consumption Q, a Q-feasible contract is a menu of of quantity-price

pairs qF (t,Q), τF (t, Q) which satisfies incentive-compatibility and individual rationality :

[IC]: θ = argmax
t
U(qF (t,Q), θ) +W (qF (t, Q), θ, Q)− τF (t,Q) ∀θ (6)

[IR]: U(qF (θ,Q), θ) +W (qF (θ, Q), θ,Q)− τF (θ, Q) ≥ Û(θ) ∀θ (7)

2.3.2 Q-optimal contracts

For any expectation of gross consumption Q, an Q-optimal contract q(θ,Q), τ(θ,Q)is a Q-feasible

contract that solves the monopolist’s profit maximization problem. That is, it solves:

max
qF (t,Q),τF (t,Q)

θZ
θ

τF (t, Q)f(t)dt, (8)

where qF (t,Q) and τF (t,Q) are subject to [IC] and [IR].
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2.3.3 Feasible fulfilled-expectations contracts

A feasible fulfilled-expectations contract is a menu of price-quantity pairs qFE(θ), τFE(θ) such that

the contract qF (t,Q), τF (t, Q) defined by

Q =

θZ
θ

qFE(θ)f(θ)dθ

qF (t,Q) = qFE(t) (9)

τF (t,Q) = τFE(t)

is a Q-feasible contract. As a consequence, if any Q-feasible contract qF (t, Q), τF (t, Q) satisfies

fulfilled-expectations:

[FE] : Q =

θZ
θ

qF (t,Q)f(t)dt, (10)

then the contract qFE(θ) = qF (θ,Q), τFE(θ) = τF (θ, Q) is a feasible fulfilled-expectations contract.

2.3.4 Optimal fulfilled-expectations contracts

A optimal fulfilled-expectations contract is a menu of price-quantity pairs q∗(θ), τ∗(θ) such that the

contract q(θ,Q), τ(θ, Q) defined by

Q =

θZ
θ

q(θ)f(θ)dθ

q(θ,Q) = q∗(θ) (11)

τ(θ,Q) = τ∗(θ)

is an Q-optimal contract. Therefore, if any Q-optimal contract q(θ, Q), τ(θ,Q) satisfies fulfilled-

expectations:

[FE] : Q =

θZ
θ

q(θ, Q)f(θ)dθ, (12)

then the contract q∗(θ) = q(θ,Q), τ∗(θ) = τ(θ,Q) is a fulfilled-expectations optimal contract.

We assume that the solution to the monopolist’s pricing problem is always a optimal fulfilled-

expectations contract. The conditions for the existence and possible uniqueness of these contracts

are described independently in each subsection.
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2.4 Direct and indirect surplus changes

Changes in total surplus as a consequence of the network effects can characterized by benchmarking

the surplus derived in the model against a base case scenario where there are no network effects.

This subsection characterizes the base case, and defines direct and indirect surplus changes, which

are examined in some of the models in Sections 3 and 4.

Define q0(θ), τ0(θ) to be the profit maximizing contract offered by the monopolist under the

base case, that is, when W (q, θ, Q) = 0. In all the models analyzed subsequently, this contract is

unique. The gross consumption under the base case is

Q0 =

θZ
θ

q0(θ)f(θ)dθ (13)

Suppose q∗(θ), τ∗(θ) is an optimal fulfilled-expectations contract for some network value function

W (q, θ, Q), and let

Q∗ =
θZ

θ

q∗(θ)f(θ)dθ. (14)

Relative to the base case, the net change in total surplus as a consequence of the network effects is

therefore:
θZ

θ

[U(q∗(θ), θ) +W (q∗(θ), θ,Q∗)]f(θ)dθ −
θZ

θ

U(q0(θ), θ)f(θ)dθ. (15)

The direct change in surplus from a customer of type θ as a consequence of the network effects is

defined as:

sn(θ) =W (q0(θ), θ,Q0), (16)

and the indirect change in surplus from a customer of type θ as a consequence of the network effects

is defined as

sq(θ) = [U(q∗(θ), θ)− U(q0(θ), θ)] + [W (q∗(θ), θ, Q∗)−W (q0(θ), θ, Q0)]. (17)

sn(θ) measures the direct change in surplus as a consequence of having the increase in value from

the network effects, without accounting for any of the changes in consumption. sq(θ) measures the

changes in surplus that arise indirectly as a consequence of the changes in consumption that the

network effects induce. The total change in surplus across all types, as specified in (15), can now

be equivalently expressed as
θR
θ

[sn(θ) + sq(θ)]f(θ)dθ.
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3 Example: Two customer types

To illustrate some of the analysis to follow, consider the case where customers are of two types

θL and θH , with θL < θH . The probability that a customer is of type θH is denoted λ, and the

probability that the customer is of type θL is (1 − λ). Since there are just two types, we drop

the functional notation for contracts, expressing then as pairs of price-quantity pairs, for which

qij = q
i(θj) and τ ij = τ i(θj).

The monopolist’s problem is to find the optimal fulfilled-expectations contract (q∗H , τ
∗
H), (q

∗
L, τ

∗
L).

In this section, we assume that Û(θH) = Û(θL) = 0.

Under the base case, it is straightforward to establish that the monopolist’s profit maximizing

contract (q0H , τ
0
H), (q

0
L, τ

0
L) satisfies:

U1(q
0
L, θL)

U1(q0L, θH)
= λ, (18a)

U1(q
0
H , θH) = 0, (18b)

and

τ0L = U(q0L, θL), (18c)

τ0H = U(q0H , θH)− [U(q0L, θH)− U(q0L, θL)]. (18d)

3.1 Q-proportional network effects

We start with the simplest kind of network effects, for which W (q, θ,Q) = w(Q). It is well-known

that in the two-type model with equal reservation utilities, a contract which satisfies [IC] for the

higher type, and [IR] for the lower type, is incentive-compatible and individually rational for both

types. Given an expectation of gross consumption Q, any Q-feasible contract (qFH , τ
F
H), (q

F
L , τ

F
L)

therefore satisfies:

[IC] : U(qFH , θH) +w(Q)− τFH ≥ U(qFL , θH) +w(Q)− τFL (19a)

[IR] : U(qFL , θL) +w(Q)− τFL ≥ 0. (19b)

The monopolist maximizes expected profits λτFH+(1−λ)τFL . Any Q-optimal contract would satisfy
(19a) and (19b) as equalities. Solving these for the τ values, and maximizing expected profits yields

the conditions any Q-optimal contract (qH , τH), (qL, τL) must satisfy:

τL = U(qL, θL) +w(Q) (20a)

τH = U(qH , θH)− U(qL, θH) + τL (20b)

U1(qL, θL) = λU1(qL, θH) (20c)

U1(qH , θH) = 0. (20d)
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Figure 1: Illustrates the optimal allocation and pricing with two consumer types and with network

value W (q, θ, Q) = w(Q), which depends on just gross consumption.

Therefore, the optimal fulfilled-expectations contract (q∗H , τ
∗
H), (q

∗
L, τ

∗
L) satisfies:

U1(q
∗
L, θL)

U1(q∗L, θH)
= λ; (21a)

U1(q
∗
H , θH) = 0; (21b)

and

τ∗L = U(q∗L, θL) +w(λq
∗
H + (1− λ)q∗L); (21c)

τ∗H = U(q∗H , θH)− U(q∗L, θH) + U(q∗L, θL) +w(λq∗H + (1− λ)q∗L). (21d)

It can be verified that the solution is unique for any strictly concave U(q, θ).

The optimal fulfilled-expectations contract is illustrated in Figure 1. Relative to base case, the

customer utility functions are shifted up by w(Q∗) for both types, at all levels of consumption.

This results in optimal quantities that are identical to those under the base case.

Correspondingly, the optimal prices for both types increase by exactly w(Q∗) relative to the base

case. The direct increase in surplus is appropriated entirely by the monopolist. Since consumption
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is unaltered, there are no indirect changes in surplus. The average price per unit increases for both

types, and this increase is more for the lower type.

3.2 q,Q-proportional network effects

The next example involves network effects that are proportionate to both gross consumption and

individual consumption. The network value function is assumed to take the linear formW (q, θ, Q) =

qw(Q). Therefore, all Q-feasible contracts (qFH , τ
F
H), (q

F
L , τ

F
L) satisfy:

U(qFH , θH) + q
F
Hw(Q)− τFH ≥ U(qFL , θH) + q

F
Lw(Q)− τFL (22a)

U(qFL , θL) + q
F
Lw(Q)− τFL ≥ 0. (22b)

Maximizing monopoly profits yields the following expressions for anyQ-optimal contract (qH , τH), (qL, τL):

τL = U(qL, θL) + qLw(Q) (23a)

τH = U(qH , θH)− U(qL, θH) + U(qL, θL) + qHw(Q) (23b)

U1(qL, θL) +w(Q) = λ(U1(qL, θH) +w(Q)) (23c)

U1(qH , θH) +w(Q) = 0 (23d)

Therefore, the optimal fulfilled-expectations contract (q∗H , τ
∗
H), (q

∗
L, τ

∗
L) satisfies:

U1(q
∗
L, θL) +w(Q

∗)
U1(q∗L, θH) +w(Q∗)

= λ, (24a)

U1(qH , θH) +w(Q
∗) = 0, (24b)

and

τ ∗L = U(q∗L, θL) + q
∗
Lw(Q

∗), (24c)

τ∗H = U(q∗H , θH) + q
∗
Hw(Q

∗)− [U(q∗L, θH)− U(q∗L, θL)], (24d)

where Q∗ = λq∗H + (1− λ)q∗L.

The optimal fulfilled-expectations contract for each type is illustrated in Figure 2. The network

value shifts the customer utility functions up by qw(Q∗) for both types. Since the shift is pro-

portionate to quantity, this results in optimal quantities that are different from those of the base

case. Comparing (24a) and (24b) with (21a) and (21b), it can be shown that both q∗H and q∗L are

higher than the corresponding quantity levels in the base case. Therefore, in addition to the surplus

increase from the network value, there is also an indirect surplus change as a consequence of the

increase in consumption across both types. Correspondingly, total prices paid by both types also

increase.

13
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Figure 2: Illustrates the optimal allocation and pricing with two consumer types and with network

value W (q, θ, Q) = qw(Q), which depends on individual consumption and gross consumption.

To establish that the monopolist appropriates all of the direct increase in surplus, consider the

following feasible fulfilled-expectations contract:

qFEL = q0L, τ
FE
L = U(q0L, θL) + q

0
Lw(Q

0); (25a)

qFEH = q0H , τ
FE
H = U(q0H , θH) + q

0
Hw(Q

0)− [U(q0L, θH)− U(q0L, θL)]. (25b)

Relative to the base case, this contract provides the monopolist with a profit increase of λq0Lw(Q
0)+

(1−λ)q0Hw(Q0). Since sq(θi) = q0iw(Q0), this profit increase is exactly equal to the expected direct
increase in surplus across both types under the optimal fulfilled-expectations contract (q∗H , τ

∗
H), (q

∗
L, τ

∗
L).

Clearly, the optimal fulfilled-expectations contract results in a (weakly) higher increase in surplus

for the monopolist.

In addition, the expression in square brackets in (24d), which represents the surplus of the higher

type customer, is determined by q∗L, and q
∗
L > q

0
L. Therefore, the surplus appropriated by the higher

type customer also increases. We can therefore conclude that the monopolist appropriates all of the

direct increase in surplus, and that the monopolist and the higher type customer share the indirect

increase in surplus. As is customary, the lower type customer gets no surplus.
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This highlights an important trade-off faced by the monopolist when considering inducing higher

consumption from low-end customers. If the monopolist were to subsidize the lower type customer

further, it would increase gross consumption, and consequently raise the increase in surplus from

the network effects (and the monopolist’s profit potential). However, this increase in consumption

would also reduces the monopolist’s ability to extract the indirect increases in surplus from higher-

type customers. This issue is discussed further in subsequent sections.

3.3 q, θ,Q-proportional network effects

Finally, consider an example in which network effects are proportionate to gross consumption,

individual consumption and type. The network value function is assumed to take the linear form

W (q, θ, Q) = qw(Q, θ). All Q-feasible contracts (qFH , τ
F
H), (q

F
L , τ

F
L) therefore satisfy:

U(qFH , θH) + q
F
Hw(Q, θH)− τFH ≥ U(qFL , θH) + q

F
Lw(Q, θH)− τFL (26a)

U(qFL , θL) + q
F
Lw(Q, θL)− τFL ≥ 0. (26b)

Proceeding as before, given Q, the conditions any Q-optimal contract (qH , τH), (qL, τL) must satisfy

are:

τL = U(qL, θL) + qLw(Q, θL) (27a)

τH = U(qH , θH)− U(qL, θH) + U(qL, θL) + (qH − qL)w(Q) (27b)

U1(qL, θL) +w(Q, θL) = λ(U1(qL, θH) +w(Q, θH)) (27c)

U1(qH , θH) +w(Q, θH) = 0 (27d)

The unique optimal fulfilled-expectations contract therefore satisfies:

U1(q∗L, θL) +w(Q
∗, θL)

U1(q∗L, θH) +w(Q∗, θH)
= λ, (28a)

U1(qH , θH) +w(Q
∗, θH) = 0, (28b)

and

τ∗L = U(q∗L, θL) + q
∗
Lw(Q

∗, θL), (28c)

τ∗H = U(q∗H , θH) + q
∗
Hw(Q

∗, θH) (28d)

−[U(q∗L, θH)− U(q∗L, θL)]− q∗L[w(Q∗, θH)−w(Q∗, θL)],

where Q∗ = λq∗H + (1− λ)q∗L.

The optimal contract for each type is illustrated in Figure 3. The network value shifts the

customer utility functions up for both types, but more for the higher type, and more for higher

15
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Figure 3: Illustrates the optimal allocation and pricing with two consumer types and with network

value W (q, θ,Q) = qw(Q, θ), which depends on type, individual consumption and gross consump-

tion.

consumption levels. It is clear that this results in an increase in consumption for the higher type

customer. However, the consumption of the lower type can either increase or decrease.

One can establish that if
U(q∗L,θL)
U(q∗L,θH)

< (>) w(Q∗,θL)
w(Q∗,θH)

, then q∗L > (<) q0L. This is based on the

fact that U(q,θL)U(q,θH)
is strictly decreasing in q, and the equalities in (18a) and (28a). That is, under

the optimal fulfilled-expectations contract, if the marginal benefit from the network effects are

substantially higher for higher type customers, the monopolist reduces consumption for lower types.

The intuition behind this observation is clearer if one examines the negative expressions in square

brackets at the end of (28d), which represent the surplus captured by the higher type. Similar to

section 3.2, the surplus captured by the higher type increases with q∗L. However, as q
∗
L increases, the

marginal increase in the surplus the monopolist must share with the customer is higher at higher

values of [w(Q∗, θH)− w(Q∗, θL)], and this provides the incentive for the monopolist to reduce q∗L
below q0L.
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4 Monopoly with network effects

We now return to the general model of monopoly with network effects specified in Section 2, which

is solved in this section. The analysis in this section makes the following assumption:

Û(θ) = 0 for all θ. (29)

This assumption is relaxed in Section 5, when there is a threat of entry.

4.1 Base case: no network effects

The purpose of this subsection is to characterize the optimal contract offered by the monopolist

in the absence of network effects (the base case, as discussed in section 2.4). Since there are no

network effects, fulfilled-expectations do not play a role.

Lemma 1 When W (q, θ,Q) = 0, the monopolist offers the contract q0(θ), τ0(θ) which satisfies the

following conditions for all θ:

U1(q0(θ), θ)

U12(q0(θ), θ)
=

1− F (θ)
f(θ)

; (30)

τ0(θ) = U(q0(θ), θ)−
θZ

θ

U2(q
0(x), x)dx (31)

This contract defined by (30) and (31) is unique. Moreover, for all θ such that q0(θ) > 0, it

satisfies q01(θ) > 0, τ
0
1(θ) > 0.

The proof of this result is omitted. The reader is referred to chapter 2 of Salanié (1997) for a

simple exposition, or to Maskin and Riley (1984) for more details. A complete proof based on a

model formulation similar to that of this paper is also available in Sundararajan (2002).

4.2 Structure of optimal contracts

This subsection describes the structure of Q-optimal contracts, and demonstrates their uniqueness.

It also provides the necessary conditions for an optimal fulfilled-expectations contract. Subsequent

sections, which impose a more specific structure on W (q, θ, Q) provide sufficient conditions for

existence and uniqueness.

Lemma 2 For every expectation of consumption Q, the Q-optimal contract q(θ, Q), τ(θ,Q) is

unique, and is defined by the following conditions:

U1(q(θ,Q), θ) +W1(q(θ,Q), θ,Q)

[U12(q(θ,Q), θ) +W12(q(θ,Q), θ, Q)]
=
1− F (θ)
f(θ)

, (32)

17



and

τ(θ,Q) = U(q(θ,Q), θ) +W (q(θ,Q), θ,Q)−
θZ

θ

[U2(q(θ,Q), x) +W2(q(θ, Q), x,Q)]dx. (33)

Unless otherwise specified, proofs of all results are available in Appendix A. The uniqueness of

the Q-optimal contract is important, especially in the analysis of entry-deterrence in Section 5.2.

Based on Lemma 2, characterizing an optimal fulfilled-expectations equilibrium is straightforward.

Lemma 3 Any optimal fulfilled-expectations contract q∗(θ), τ∗(θ) satisfies the following conditions:

Q∗ =
θZ

θ

q∗(θ)f(θ)dθ, (34)

U1(q
∗(θ), θ) +W1(q

∗(θ), θ, Q∗)
[U12(q∗(θ), θ) +W12(q∗(θ), θ,Q∗)]

=
1− F (θ)
f(θ)

, (35)

and

τ∗(θ) = U(q∗(θ), θ) +W (q∗(θ), θ,Q∗)−
θZ

θ

[U2(q
∗(x), x) +W2(q

∗(x), x,Q∗)]dx. (36)

Lemma 3 follows directly from the first-order necessary conditions for the monopolist’s problem,

reformulated in the standard way, and with the additional requirement of fulfilled expectations.

4.3 Q-proportional network effects

This subsection specifies the optimal fulfilled-expectations contract when network value function

depends on just gross consumption, and discusses some properties of consumption, pricing and

welfare under this contract.

The following proposition establishes that the unique solution to the monopolist’s problem in

this case is very similar to that of the base case:

Proposition 1 If W (q, θ,Q) = w(Q), then the optimal fulfilled-expectations contract takes the

form:

q∗(θ) = q0(θ); (37)

τ∗(θ) = τ0(θ) +w(Q0), (38)

where q0(θ) and τ 0(θ) are specified in (30) and (31), and Q0 =
θR
θ

q0(θ)f(θ)dθ. A contract of this

form exists and is unique for any network value function w(Q).
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Figure 4: Based on Proposition 1, illustrates the optimal consumption of two types θ1 and θ2 (θ1 <

θ2) when network effects are proportionate to just Q. The point q at which first-order necessary

conditions are met for each type is at the intersection of the U1(q, θ) and the U12(q, θ)
1−F (θ)
f(θ) curves,

neither of which is altered by a network value function dependent on just Q. As a consequence,

q∗(θ) = q0(θ).

Proposition 1 shows that when the network value function depends on just gross consumption,

the monopolist finds it optimal to induce levels of consumption from each customer type that are

identical to those in the absence of network effects, and simply increase the price charged to every

type by an amount equal to the network value. The form of this result is similar to that obtained

in the two-type example of section 3.1 — consumption remains unaltered, and total price goes up

equally for all types.

The intuition behind this result is straightforward. For any common expectation Q of gross

consumption, all of the customers’ utility functions are shifted up by the same constant amount,

equal to w(Q). Since there is no change in the marginal properties of the utility functions, the

monopolist’s optimal allocation remains the same. This is illustrated in Figure 4.

It is evident from (38) that the monopolist captures all of the direct increase in surplus. Since

there is no change in consumption relative to the base case, there is no indirect change in surplus.

Customer surplus is therefore identical to the base case, for all types.
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4.4 q,Q-proportional network effects

This subsection characterizes the optimal fulfilled-expectations contract when the network value

function depends on both gross consumption and individual consumption, specifies the conditions

under which a contract of this form exists, and is unique, and also discusses changes in consumption,

pricing and welfare, relative to the base case.

The following proposition establishes the main results of the subsection:

Proposition 2 (a) If W (q, θ, Q) = qw(Q), then any optimal fulfilled-expectations contract satisfies

the following conditions:
U1(q∗(θ), θ) +w(Q∗)

U12(q∗(θ), θ)
=
1− F (θ)
f(θ)

, (39)

and

τ∗(θ) = U(q∗(θ), θ) + q∗(θ)w(Q∗)−
θZ

θ

U2(q
∗(x), x)dx, (40)

where Q∗ =
θR
θ

q∗(θ)f(θ)dθ.

(b) If w(Q) has a finite upper bound w, then an optimal fulfilled-expectations contract always

exists. In addition, for all Q, if w1(Q) ≤ −U11(q, θ) for all Q and q, then (39) and (40) specify the
unique optimal fulfilled-expectations contract.

(c)For all θ, q∗(θ) > q0(θ), and τ∗(θ) > τ0(θ).

(d) The monopolist extracts all of the direct increase in surplus, and shares some of the indirect

increase in surplus with the customers. That is:

θZ
θ

τ∗(θ)f(θ)dθ −
θZ

θ

τ0(θ)f(θ)dθ >

θZ
θ

sn(θ)f(θ)dθ, (41)

and
θZ

θ

τ∗(θ)f(θ)dθ −
θZ

θ

τ0(θ)f(θ)dθ <

θZ
θ

[sn(θ) + sq(θ)]f(θ)dθ, (42)

where sn(θ) and sq(θ) are as defined in (16) and (17).

Sufficient conditions for the existence of an optimal fulfilled-expectations equilibrium are fairly

mild — all that is required is that the marginal benefit from the network effects w(Q) be bounded.

For a unit change in Q, the condition for uniqueness restricts the marginal network value to being

less than the marginal increase in intrinsic value for the highest type. In general, this requires

that network value not grow too fast relative to intrinsic value. The proof of proposition 2 specifies
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Figure 5: Based on Proposition 2, illustrates the optimal consumption of two types θ1 and θ2

(θ1 < θ2) when network effects are proportionate to q and Q. The marginal intrinsic value curves

U1(q, θ) are shifted up by a constant amount w (Q), while the U12(q, θ)
1−F (θ)
f(θ) curves remain the

same as in the base case. Since the former set of curves slope down, and the latter slope up, this

results in a strict increase in consumption for all types, relative to the base case.

stronger alternate sufficient conditions, which are independent of w(Q), but place restrictions on

the curvature of U(q, θ) that depend on the reciprocal of the hazard rate, and may not always be

met.

Even if the solution is not unique, this is not unduly troubling, since multiple possible equi-

librium outcomes are not uncommon in models of network goods. The monopolist simply needs

to pick the optimal fulfilled-expectations contract that provides the highest profits — customer ex-

pectations are formed after the contract is specified, anyway. It is more important to note that

the results in parts (c) and (d) of the proposition do not rely on uniqueness. Therefore, when

multiple optimal fulfilled-expectations contracts exist, each of them will result in higher individual

consumption and price, and each will induce the surplus distribution specified in (41) and (42).

The result from part (c) is illustrated in Figure 5, for two candidate types. As in section 4.3,

the result is consistent with the one obtained from the two-type model6. Part (d) establishes that

the monopolist continues to get all the direct increase in surplus from the network effects, and that

6It is also likely that the optimal consumption of the higher types increases more than that of the lower types,

though establishing this rigorously requires a number of detailed assumptions on the exact curvature of U(q, θ).
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any increase in surplus for customers comes from the indirect increases. This extends the result

in section 4.3, where there was no indirect increase in surplus. In addition, it is consistent with

the two-type model in section 3.2. The result follows from a similar argument — that the feasible

fulfilled-expectations contract that implements q0(θ) results in a profit increase equal to the direct

increase in surplus.

4.5 q, θ,Q-proportional network effects

This subsection characterizes the optimal fulfilled-expectations contract when the network value

function depends on gross consumption and individual consumption, as well as on customer type,

specifies sufficient conditions under which a contract of this form exists and is unique, and discusses

changes in consumption and pricing.

Proposition 3 characterizes the optimal fulfilled-expectations contract, sufficient conditions for

its existence and uniqueness, and the changes in individual consumption for each type relative to

the base case.

Proposition 3 (a) If W (q, θ, Q) = qw(Q, θ), then any optimal fulfilled-expectations contract sat-

isfies the following conditions:

U1(q
∗(θ), θ) +w(Q∗, θ)

U12(q∗(θ), θ) +w2(Q∗, θ)
=
1− F (θ)
f(θ)

, (43)

and

τ∗(θ) = U(q∗(θ), θ) + q∗(θ)w(Q∗)−
θZ

θ

[U2(q
∗(x), x) + q∗(x)w2(Q∗, x)]dx, (44)

where Q∗ =
θR
θ

q∗(θ)f(θ)dθ.

(b) If w(Q, θ̄) has a finite upper bound w, then an optimal fulfilled-expectations contract always

exists. In addition, for all Q, if w1(Q, θ̄) ≤ −U11(q, θ) for all Q and q, then (43) and (44) specify

the unique optimal fulfilled-expectations contract.

(c) For each θ, if
U1(q

∗(θ), θ)
U12(q∗(θ), θ)

> (<)
w(Q∗, θ)
w2(Q∗, θ)

, then q∗(θ) < (>) q0(θ). However, there always

exists a subset of types [θ̂, θ] such that q∗(θ) ≥ q0(θ) for all θ ∈ [θ̂, θ].

Proposition 3 indicates that an upper bound on the marginal network value is sufficient to

ensure that an optimal fulfilled-expectations contract exists, and that limiting the rate of change of

marginal network value ensures uniqueness. Again, alternative sufficient conditions for uniqueness

are discussed in the proof of Proposition 3. It is possible that in many applications of the model,
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Figure 6: Based on Propositions 3 and 4, illustrates the optimal consumption of two types θ1 and

θ2 (θ1 < θ2) when network effects are proportionate to q, θ and Q. The marginal intrinsic value

curves U1(q, θ) are shifted up by different amounts w (Q, θ), while the U12(q, θ)
1−F (θ)
f(θ) curves are

shifted up by w2(Q, θ). In the figure, the marginal network value w(Q, θ) increases from θ1 to θ2,

at a relatively steady value of w2(Q, θ). The increased heterogeneity between types results in a

reduction in consumption for θ1 when the monopolist optimally price-discriminates.

there may be multiple optimal fulfilled-expectations contracts; however, the results of part (c) and

of Proposition 4 apply to any optimal fulfilled-expectations contract.

Surprisingly, part (c) of the proposition shows that individual consumption may actually reduce

for some customer types, despite the fact that network effects cause both the total utility and the

marginal utility to increase for all customers, at any consumption level. The result also indicates

that the set of customers for whom consumption reduces are not part of a highest subset of types.

This reduction in consumption is caused by optimal price-discrimination when network value in-

creases faster than intrinsic value. At comparable levels of marginal intrinsic value U1(q, θ) and

marginal network value w(Q, θ), when the rate at which the marginal network value increases with

type is substantially higher than the rate at which intrinsic value increases with type — that is, when

w2(Q
∗, θ) > U12(q∗(θ), θ) — it becomes difficult for the monopolist to ensure incentive compatibility

for the higher types, necessitating a reduction in the price and consumption levels of lower types.
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The result accentuates the trade-off between price discrimination and increasing consumption that

was initially highlighted at the end of section 3.2.

Part (c) of Proposition 3 also shows that there is always a subset of types for whom consumption

increases. Under some fairly weak additional assumptions, further structure can be placed on the

changes in individual consumption, relative to the base case:

Proposition 4 Suppose the marginal network value w(Q, θ) is concave in θ. In addition, assume

that either ∂
∂θ (

U1(q,θ)
U12(q,θ)

) ≤ 1+U12(q,θ)
U12(q,θ)

, or that U112(q, θ) ≥ U11(q, θ)U122(q, θ). Then:

(a) If
U1(q

∗(θ), θ)
U12(q∗(θ), θ)

<
w(Q∗, θ)
w2(Q∗, θ)

, then q∗(θ) > q0(θ) for all θ ∈ [θ, θ]

(b) If
U1(q

∗(θ), θ)
U12(q∗(θ), θ)

>
w(Q∗, θ)
w2(Q∗, θ)

, then there exists an interior type θ̂ ∈ (θ, θ) such that q∗(θ) <
q0(θ) for θ < θ̂, and q∗(θ) > q0(θ) for θ > θ̂.

Proposition 4 establishes that if the consumption q∗(θ) of the lowest type increases under the new

contract, then so does the consumption of all types. More generally, if q∗(θ) ≥ q0(θ) for any type θ,
then q∗(θ) > q0(θ) for all higher types. Since w(Q∗, θ) > 0, part (a) of Proposition 3 ensures that

the consumption of the highest type is always higher than q0(θ), and that, in fact, U1(q
∗(θ), θ) < 0.

There is therefore always a positive subset of customer types for whom consumption increases.

Either of the additional assumptions ensures monotonicity in the difference between the rates

at which U1(q,θ)
U12(q,θ)

and w(Q,θ)
w(Q,θ) vary with θ at the optimal contract q∗(θ), which enables the strict

ordering of types that the proposition establishes. These assumptions are not ‘tight’, and it is

possible that they are not necessary, but establishing this remains work-in-progress.

It is straightforward to establish that relative to the base-case, there is a strict increase in

the monopolist’s profits, and that there is a strict increase in surplus for any customer whose

consumption q∗(θ) > q0(θ). Since there is always a positive measure of such types, the total

increase in surplus from the network effects (direct and indirect) is never fully appropriated by

either the seller or the customers. Beyond that, however, it is harder to characterize the welfare

properties of the contract.

5 Entry-deterring monopoly with network effects

This section analyzes changes in the monopolist’s optimal pricing strategy when facing a threat

of entry from a single entrant, whose network good is intrinsically a perfect substitute for the

monopolist’s product. By virtue of being the incumbent, the monopolist’s product has a positive

network value for all customers. The entrant’s product, on the other hand, provides only its intrinsic
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value to the customers. The fixed cost of entry is assumed to be zero.

5.1 Formulation of the monopolist’s problem

The purpose of this subsection is to establish that the problem of pricing to deter entry under the

threat of costless entry is equivalent to a problem of pricing in the absence of any entry threat, but

with type-dependent individual rationality constraints.

The utility of a customer of type θ who purchases a quantity q of the monopolist’s product for

a payment p is

U(q, θ) +W (q, θ, Q)− p, (45)

and the utility of a customer of type θ who purchases a quantity q of the entrant’s product for a

payment p is

U(q, θ)− p. (46)

Given a set of prices, and an expectation Q of gross consumption of the monopolist’s product, cus-

tomers choose the product and quantity that maximizes their utility. Customers indifferent between

the monopolist’s and the entrant’s products are assumed to choose the monopolist’s product.

A complete characterization of the entry game is not provided. Rather, the analysis focuses

on the characteristics of pricing schedules for the monopolist that successfully deter entry. Since

the fixed cost of entry is assumed to be zero, these are pricing schedules under which any pricing

scheme offered by the entrant results in zero profits for the entrant.

Recall that

α(θ) = argmax
q
U(q, θ), (47)

and that

β(θ,Q) = argmax
q
U(q, θ) +W (q, θ, Q). (48)

Suppose the entrant offered the constant pricing scheme p(q) = ε, where ε is small. Under this

pricing scheme, each customer would choose their intrinsic-value maximizing level of consumption

α(θ), and would realize surplus of (U(α(θ), θ) − ε). If this type of customer expected surplus of

less than (U(α(θ), θ) − ε) from the monopolist’s product, they would buy the entrant’s product,

and the entrant would receive non-zero profits. Therefore, in order to deter entry, the monopolist’s

pricing scheme must provide customers of type θ with a surplus of at least (U(α(θ), θ)− ε), for all

ε > 0. Clearly, this cannot be achieved unless the pricing scheme provides customers of type θ with

surplus of at least U(α(θ), θ). Since U(α(θ), θ) is the maximum surplus that a customer of type

θ can get from the entrant’s product under any pricing scheme, ensuring that customers get this

level of surplus is both necessary and sufficient for the monopolist to deter entry.
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As a consequence, when the fixed cost of entry is zero, deterring entry simply imposes a lower

bound on the surplus each customer type must receive. Analytically, this is identical to the problem

of choosing a pricing scheme with type-dependent individual rationality constraints. Therefore,

setting Û(θ) = U(α(θ), θ) in equation (7) ensures that any Q-feasible contract deters entry, and

the definitions of all the other contracts in section 2.4 remain the same.

The monopolist’s problem is to choose the optimal fulfilled-expectations contract, with Û(θ) =

U(α(θ), θ). In the following subsections, this problem is solved for Q-dependent and q,Q-dependent

network effects. Rather than contrasting them with the base case, the contracts are compared to

those derived in the absence of an entry threat (sections 4.3 and 4.4).

5.2 Entry deterrence with Q-proportional network effects

This subsection specifies the optimal fulfilled-expectations contracts when network value function

depends on just gross consumption, and entry is successfully deterred. The following proposition

establishes that the unique solution to the monopolist’s problem in this case is to specify a quantity-

independent (fixed-fee) pricing schedule:

Proposition 5 If W (q, θ,Q) = w(Q), then the optimal fulfilled-expectations contract that deters

entry takes the form:

q∗(θ) = α(θ); (49)

τ∗(θ) = w(Q∗), (50)

where Q∗ =
θR
θ

α(θ)f(θ)dθ. A contract of this form exists and is unique for any network value

function w(Q).

Proposition 5 establishes that when deterring entry with network effects that depend on just

gross consumption, the monopolist’s optimal pricing scheme results in all customers choosing the

level of consumption that maximizes total surplus7. Intuitively, the result is straightforward. A

contract that separates any subset of types would need to induce consumption levels that are strictly

lower than α(θ) for all but the highest type in this subset. Ignoring the effect of reduced gross

consumption on network value, this would result in a strict decrease in profits for the monopolist,

since they would have to share some portion of the network value w(Q∗) with the customers in this

subset in order to ensure that their surplus is at least U(α(θ), θ). The effect of the accompanying

reduction in gross consumption on network value accentuates this reduction in monopoly profits
7Note that since W1(q, θ, Q) = 0 in this case, β(θ, Q) = α(θ).
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further. As a consequence, it is strictly profit-reducing to price-discriminate, and the monopolist

offers the fixed-fee that maximizes profits. Since all customer get the same network value w(Q∗),

a fixed-fee contract that induces participation by any type induces participation by all types.

Relative to the model with no entry threat in Section 4.3, entry deterrence results in a strict

increase in consumption, since q0(θ) < α(θ) for all θ < θ. Both the intrinsic value and the network

value realized from each customer’s consumption increase, and consequently, total surplus also

increases. The surplus of all customer types increases, but the monopolist’s profits are strictly

lower.

5.3 Entry deterrence with q,Q-proportional network effects

This subsection analyzes optimal fulfilled-expectations contracts when network value function de-

pends on both gross consumption and individual consumption, and entry is successfully deterred.

Let qm(θ,Q) denote the Q-optimal contract in the absence of an entry threat (as in section 4.4).

From Lemma 2, this allocation is defined for each θ by the necessary conditions

U1(q
m(θ,Q), θ) +w(Q)

U12(qm(θ, Q), θ)
=
1− F (θ)
f(θ)

, (51)

and is unique for a fixed value of Q. Also, from Proposition 3, we know that there is an optimal

fulfilled-expectations equilibrium — that is, there is a value of gross consumption such that

Qm =

θZ
θ

qm(θ, Qm)f(θ)dθ. (52)

The following proposition establishes that the monopolist’s pricing scheme results in individual

consumption that is either of the form qm(θ, Q), or that maximizes intrinsic value for the customer:

Proposition 6 Suppose W (q, θ, Q) = qw(Q). Assume that the uniqueness condition w1(Q) ≤
−U11(q, θ) from proposition 3 is met. Define:

Qα = Q : qm(θ, Q) = α(θ), and (53)

θ̂(Q) = θ : qm(θ, Q) = α(θ). (54)

(a) If Qα ≤ Qm, then the unique optimal fulfilled contract satisfies:

q∗(θ) = qm(θ,Qm) (55)

τ∗(θ) = U(qm(θ), θ) + qm(θ)w(Qm)− U(α(θ), θ)− [
θZ

θ

(U2(q
∗(x), x)− U2(α(x), x))dx] (56)
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(b) If Qα > Qm, then the unique optimal fulfilled contract satisfies:

q∗(θ) = α(θ) (57)

τ∗(θ) = α(θ)w(Q∗) (58)

for θ ≤ θ̂(Q∗), and

q∗(θ) = qm(θ,Q∗) (59)

τ∗(θ) = U(q∗(θ), θ) + q∗(θ)w(Q∗)− U(α(θ), θ)− [
θZ

θ̂(Q)

(U2(q
∗(x), x)− U2(α(x), x))dx] (60)

for θ ≥ θ̂(Q∗), where Q∗ is the unique solution to:

Q =

θ̂(Q)Z
θ

α(θ)f(θ)dθ +

θZ
θ̂(Q)

qm(θ,Q)f(θ)dθ. (61)

Proposition 6 establishes that the same conditions that ensure uniqueness of the optimal fulfilled-

expectations contract in the absence of an entry threat are sufficient to ensure uniqueness under

the threat of entry. It also establishes that the optimal fulfilled-expectations contract that deters

entry is a subset of two contracts — the one specified in Proposition 2, and the feasible fulfilled-

expectations contract which implements allocations of a(θ).

For the lowest type, if qm(θ,Qm) > α(θ), an immediate corollary of the proposition is that the

presence of the entry threat does not change the individual consumption of any of the types (since

qm(θ,Qm) > α(θ) implies that Qα < Qm). This is likely to happen when the marginal network

value w(Q) is high relative to intrinsic value, or equivalently, if network effects are substantial for

all types.

Under the conditions of part (b) of the proposition, the threat of entry induces an increase in

individual consumption. However, even in this case, θ̂(Q∗) is always an interior point of [θ, θ]. This

implies that the increase in individual consumption will be for a subset of ‘lower’ types, and for

any w(Q) > 0, there will always be a subset of higher types whose individual consumption remains

unchanged. Therefore, while total surplus increases when entry is deterred, all of the increase comes

from a lower subset of customers types.

All customers of type θ get surplus at least equal to U(α(θ), θ), which implies that they capture

all of the intrinsic value that they create. Moreover, the customers whose consumption does not

change — that is, the ones who continue to purchase qm(θ,Qm) — capture a fraction of the network

value that they create. Since U(α(θ), θ) > U(q∗(θ), θ) for q∗(θ) > α(θ), the monopolist needs

to give up network value to the customer if they raise consumption beyond α(θ). The negative
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terms in square brackets at the end of equations (56) and (60) represent the surplus type θ gets

beyond U(α(θ), θ), which implies that these customers are capturing a fraction over and above this

minimum level, despite the fact that there is no heterogeneity in marginal network value w(Q)

across customer types.

6 Discussion and Conclusion

A number of new results relating to the pricing of network goods have been derived in Sections 4

and 5. This section discusses some of these results, examines some of the model’s assumptions, and

concludes with an outline of open questions raised by the analysis.

6.1 Discussion of results

For a number of network goods, customer usage is in variable quantities, network value may be

based on individual consumption, and may vary across customers. This paper provide a set of

results which can form the basis for pricing policy for network goods of this kind. In addition, a

substantial fraction of empirical work on network externalities (for instance, Gandal, 1995, Bryn-

jolfsson and Kemerer, 1996, Forman, 2001) have focused on industries (databases, spreadsheets,

LAN equipment) in which producers with monopoly power routinely offer nonlinear pricing sched-

ules, sell variable quantities to customers, and potentially price to deter entry. Towards this end,

the results of this paper would form a more robust theoretical basis for subsequent empirical work

which aims to estimate the extent and implications of network effects in these industries

When network effects do not vary across customers, Proposition 1 indicates that the network

effect causes no change in consumption, and that all surplus from the network effects is appropriated

by the monopolist. When there is a threat of entry in the same setup, Proposition 5 shows that

pricing changes substantially — a fixed fee is offered to all customer types — and that the threat of

entry results in the outcome being socially optimal. While this is the simplest model of network

value, it could apply to industries in which the primary network value stems from a fixed-cost

reduction — for instance, the cost of finding the appropriate hosting infrastructure, or qualified

technical support.

The pricing scheme in the latter case is similar to the cost-plus-fixed-fee results obtained in a

duopoly model by Rochet and Stole (2001). In addition, the outcome suggests that if competing

products are anything but perfectly compatible, any oligopoly outcome will always be socially

inferior to the monopoly outcome, so long as the entry threat is maintained. In other words, from

a policy perspective, ensuring a credible threat of entry is more socially efficient than actually
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inducing entry.

When the value from the network effects varies with individual consumption, Proposition 2

indicates that the network effects induce an increase in consumption across all customer types,

so long as the marginal network value is equal across types. In any model of price screening,

there is always a trade-off between value creation and price discrimination, and the consumption

of lower customer types is limited by the monopolist’ desire to capture as much surplus as possible.

The value creation aspect is accentuated further when there are network effects, since increases in

consumption from any customer type increases the surplus created by all customer types. However,

the trade-off still exists, and while pricing is redesigned to induce consumption increases from both

lower and higher customer types, the consumption of lower types is still at an inefficient level.

Moreover, sufficient heterogeneity in the marginal network value across types actually reduces the

consumption of lower types, as indicated by Propositions 3 and 4, even when the marginal network

value is positive for these types — this effect is driven entirely by price discrimination. Consequently,

rather than benefiting all participants, certain kinds of network effects can actually harm lower-

usage customers, and result in the distribution of customer surplus being skewed further towards

high-end customers.

When network value depends on individual consumption as well as gross consumption, the

effects of an entry threat are less pronounced that those predicted by Proposition 5. In fact, as

shown in Proposition 6, the threat of entry may have no effect on consumption or surplus, and may

merely results in a price change that redistributes surplus between the monopolist and its customers.

Note that this occurs even when entry is not blockaded. This outcome is most likely when, relative

to marginal intrinsic value, marginal network value is fairly high across all customers. When

the entry threat does induce a change in total surplus, it stems from consumption increases from

lower-usage customers. This is an encouraging result, since it suggests that consumption disparities

across different types of customers that stem from network effects can be partially mitigated by

policy that creates a credible entry threat. In addition to reducing the differences in consumption

across customers, there will be accompanying increases in surplus for all customers. While the

outcome never maximizes total surplus, it is still likely that it is more efficient than an oligopoly

with incompatible products.

The analysis of the division of surplus created by the network effects suggests that in the absence

of an entry threat, the surplus captured by customers comes entirely from the network value created

by changes in consumption. While the paper does not explore or model their source, the network

effects displayed by the products used as examples to motivate the analysis are predominantly what

would be called indirect network effects (or pecuniary externalities), and consequently, a discussion

of the fact that the network ‘externalities’ are not internalized by the customers who create them
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is unlikely to be useful.

6.2 Discussion of assumptions

The sequence of events specified in section 2.3 assumes that all customers have identical expectations

of gross consumption. Since all customers are rational, this is not restrictive — everyone has access

to all the information needed to compute the expected consumption, and once the monopolist has

specified prices, there is no residual uncertainty about what each type will demand. Clearly, in

equilibrium, all customers must have the same expectation (the correct one).

However, compared to the standard model of nonlinear pricing, the model in this paper places

a higher computational burden on the customers. Each customer has to know F (θ), compute the

optimal consumption not just for themselves but for all customer types, and them calculate the

gross consumption. It may be likely that customers of network goods cannot actually compute

the true gross consumption immediately, either due to a lack of information, or due to bounds

on processing capabilities. This suggests that there may be a multi-period adjustment process, in

which customers iteratively make a series of guesses, which converge to the fulfilled-expectations

equilibrium outcome. Alternately, customers may learn the distribution of types from the pricing

schedule over time. Formalizing these notions remains (early-stage) work in progress.

The assumption that U(q, θ) has a finite maximum q for all θ is non-standard. However, given

that marginal costs are zero in the model, it is necessary in order to get a bounded solution. It is

also a reflection of reality — that customers do stop using zero marginal price products at a finite

level, typically due to the presence of resource constraints, and substitute uses for shared resources,

as discussed in Section 2.1.

In addition, slightly modified versions of all of the results in this paper continue to hold under

the standard assumption of unbounded utility and convex costs. Consider, for instance, a (standard)

specification in which customer utility is Ũ(q, θ)+W (q, θ,Q), Ũ1(q, θ) > 0 for all q, and the provision

of quantity q to each customer had a positive cost c(q), where c1(q) > 0, c11(q) > 0. If one defined

the surplus function:

U(q, θ) = Ũ(q, θ)− c(q),
then U(q, θ) would have the same properties as it does in this model. More importantly, all

the expressions for q∗(θ) derived in the model would continue to be valid, and so would all the

expressions for τ∗(θ), if it is treated as the optimal markup rather than the optimal price. In other

words, the optimal contracts would be q∗(θ), (τ∗(θ)+ c(q∗(θ))), with the same expressions for q∗(θ)

and τ∗(θ) derived in this paper.

To guarantee uniqueness, many of the propositions have specified conditions that need to be
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imposed on W (q, θ,Q) — in general, they restrict the rate of change of marginal network value

W1(q, θ, Q) with increases in Q. When network effects are a primary source of value, these con-

ditions may no longer be reasonable. However, all of the properties of the contracts derived in

Propositions 1 through 5 do not depend on uniqueness. Moreover, if there are multiple optimal

fulfilled-expectations equilibria, all the monopolist needs to do is choose the one with the highest

profits — expectations are formed after prices are posted, and any price schedule has at most one

optimal fulfilled-expectations equilibrium. Proposition 6 does rely on uniqueness, but a slightly

modified version continues to hold if one assumes that the monopolist always chooses the highest-

profit contract.

6.3 Concluding remarks

Industries in which products display network effects are often natural monopolies, especially when

competing products are likely to be incompatible. Moreover, in at least one case (desktop oper-

ating systems), entry-deterrence appears to play a significant role in pricing. As a consequence,

the analysis of an entry-deterring monopolist is likely to be of substantial importance for these

industries. In light of the results obtained in this paper, one natural question that arises is how

the presence of a non-zero entry cost affects outcomes. While it is clear that monopoly profits will

increase, and entry deterrence will still be an optimal strategy, it is likely that the monopolist’s

profits will increase by less than the entry cost. The exact nature of how this affects consumption

and welfare remains an open question.

Another set of open questions relate to the effect of relaxing the assumption that when network

effects are type-dependent, the intrinsic value of the product and the value from the network

effects are perfectly correlated. Since customer utility is separable in these two sources of value,

one could model the network good as a multiproduct bundle, and characterize customers using

a two-dimensional type vector, drawing on Armstrong (1996) and Rochet and Chone (1998). A

particularly interesting case might be when the components of the vector are negatively correlated

— for instance, in an electronic marketplace, where the intrinsic value depends on the frequency of

trade while the value from network effects depends on the dollar value of the goods being traded.

This would introduce countervailing incentives, and may lead to quantity-independent fixed fees

being optimal.

Finally, the model of pricing under the threat of entry suggests the feasibility of analyzing

a general model of nonlinear pricing for competing network goods. In the absence of network

effects, and with zero marginal costs, results from Mandy (1992) indicate that in a duopoly, the

only equilibrium pair of contracts involves both firms choosing a price of zero for all quantities.
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However, if customers expect the competing products to have different levels of gross consumption

in equilibrium, they would view them as vertically differentiated products, which may facilitate

non-zero equilibrium prices, as in Stole (1995). Similar issues have been analyzed in a model of

coalition formation by Economides and Flyer (1998). The results from Section 4 suggest that in a

general model, the equilibrium profits of the smaller network are unlikely to be non-zero. It is also

possible that allowing mixed-strategies may lead to more interesting equilibrium outcomes, and

recent results from Rochet and Stole (2001) facilitate an analysis of this kind. I hope to address

some of these questions in the near future.
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A Appendix: Proofs

Proof of Lemma 2

(Note: This result can be directly inferred from the fact that for a fixed Q, the function U(q, θ)+

W (q, θ, Q) satisfies all the conditions in q and θ that a utility function needs to satisfy to ensure

a unique, fully separating solution. For completeness, the details of the proof are provided below.

Readers acquainted with the standard adverse selection theory with continuous types will find the

arguments and sequence of analysis familiar, and can skip the details).

Given a expectation of gross consumption Q, any Q-feasible contract qF (t,Q), τF (t,Q) satisfies

[IC] is satisfied if:

θ = arg max
t∈[θ,θ]

U(qF (t,Q), θ) +W (qF (t,Q), θ, Q)− τF (t,Q), (62)
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for all θ. The necessary and sufficient conditions for (62) are:

[U1(q
F (t, Q), θ) +W1(q

F (t, Q), θ,Q)]qF1 (t,Q)− τF1 (t,Q) = 0 ∀θ; (63)

[U11(q
F (t,Q), θ) +W11(q

F (t, Q), θ,Q)](qF1 (t, Q))
2

+[U1(qF (t, Q), θ) +W1(qF (t, Q), θ, Q)]qF11(t,Q)− τF11(t,Q) ≤ 0 ∀θ.
(64)

Differentiating (63) with respect to θ and substituting (64) yields the modified sufficient condition:

[U12(q
F (t, Q), θ) +W12(q

F (t,Q), θ,Q)]qF1 (t, Q) ≥ 0 ∀θ. (65)

By assumption, both U12(q, θ) and W12(q, θ, Q) are strictly positive, which means that (63) and

(65) reduce to:

τF1 (t,Q) = [U1(q
F (t, Q), θ) +W1(q

F (t,Q), θ, Q)]qF1 (t,Q), (66)

qF1 (t,Q) ≥ 0, (67)

for all θ. Under qF (t, Q), τF (t, Q), the surplus of type θ is

s(θ) = U(qF (θ,Q), θ) +W (qF (θ, Q), θ,Q)− τF (θ, Q). (68)

Differentiating (68) with respect to θ, and substituting (66) yields:

s1(θ) = U2(q
F (θ,Q), θ) +W2(q

F (θ, Q), θ, Q). (69)

Since reservation utility Û(θ) = 0 for all types, if IR is satisfied for the lowest type θ, it is satisfied

for all others. Therefore, s(θ) = 0, and

s(θ) =

θZ
x=θ

[U2(q
F (x,Q), x) +W2(q

F (x,Q), x,Q)]dx. (70)

From (68), we know that

τF (θ,Q) = U(qF (θ,Q), θ) +W (qF (θ,Q), θ,Q)− s(θ), (71)

which when combined with (70) means that the objective function whose maximizer is the optimal

contract q(θ,Q), τ(θ, Q) can be written as:

θR
θ=θ

{U(qF (θ,Q), θ) +W (qF (θ, Q), θ, Q)

−[
θR

x=θ

U2(q
F (x,Q), x) +W2(q

F (x,Q), x,Q)dx]}f(θ)dθ.
(72)

Integrating the second part of (72) by parts and rearranging yields:

q(θ, Q) = arg max
qF (θ,Q)

θR
θ=θ

{U(qF (θ, Q), θ) +W (qF (θ,Q), θ, Q)

−[U2(qF (θ,Q), θ) +W2(qF (θ, Q), θ, Q)]
1−F (θ)
f(θ) }f(θ)dθ,

(73)
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subject to q(θ,Q) ≥ 0, and that

τ(θ,Q) = U(q(θ, Q), θ) +W (q(θ, Q), θ, Q)

−
θR

x=θ

[U2(q(x,Q), x) +W2(q(x,Q), x,Q)]dx.
(74)

If the unconstrained problem has a unique solution for which q(θ,Q) ≥ 0, then this is the solution
to the constrained problem as well.

Define

H(θ) =
1− F (θ)
f(θ)

(75)

First-order conditions for the unconstrained problem are therefore:

U1(q(θ,Q), θ) +W1(q(θ, Q), θ,Q) = [U12(q(θ, Q), θ) +W12(q(θ, Q), θ,Q)]H(θ) ∀θ, (76)

and are sufficient if the point-wise profit function:

π(q, θ,Q) = U(q, θ) +W (q, θ, Q)− [U2(q, θ) +W2(q, θ, Q)]H(θ) (77)

is strictly concave in q. Differentiating (77) with respect to q twice yields:

π11(q, θ,Q) = U11(q, θ) +W11(q, θ,Q)− [U112(q, θ) +W112(q, θ,Q)]H(θ), (78)

which verifies that π(q, θ, Q) is strictly concave, since U11 < 0, W11 ≤ 0, U112 ≥ 0 and W112 ≥
0. This ensures that for the unconstrained problem, first-order conditions (76) yield the unique

solution. These conditions can be rearranged as:

U1(q(θ,Q), θ) +W1(q(θ,Q), θ,Q)

[U12(q(θ,Q), θ) +W12(q(θ,Q), θ, Q)]
=
1− F (θ)
f(θ)

. (79)

Now, differentiating both sides of (76) with respect to θ yields:

[U11(q(θ,Q), θ) +W11(q(θ,Q), θ,Q)]q1(θ, Q) + [U12(q(θ,Q), θ) +W12(q(θ,Q), θ,Q)] (80)

= [U112(q(θ,Q), θ) +W112(q(θ, Q), θ, Q)]H(θ)q1(θ,Q)

+ [U122(q(θ,Q), θ) +W122(q(θ, Q), θ, Q)]H(θ)

+ [U12(q(θ, Q), θ) +W12(q(θ, Q), θ,Q)]H1(θ)

which implies that:

q1(θ,Q) =
[U12(q(θ, Q), θ) +W12(q(θ, Q), θ, Q)][1−H1(θ)]− [U122(q(θ, Q), θ) +W122(q(θ,Q), θ,Q)]H(θ)

[U112(q(θ, Q), θ) +W112(q(θ,Q), θ,Q)]H(θ)− [U11(q(θ,Q), θ) +W11(q(θ,Q), θ,Q)]
.

(81)

Since π(q, θ,Q) has been shown to be strictly concave in q, the denominator of (81) is strictly

positive. Also, the reciprocal of the hazard rate is non-increasing in θ, which implies thatH1(θ) ≤ 0.
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Therefore, so long as both U122(q, θ) and W122(q, θ) are both non-positive, the numerator of (81)

is strictly positive. Consequently, it has been established that

q1(θ,Q) > 0, (82)

which implies that the unique unconstrained solution q(θ, Q) always satisfies the constraint, and

completes the proof.

Proof of Lemma 3

Suppose q∗(θ), τ∗(θ) is an optimal fulfilled-expectations contract. From the definition of an

optimal fulfilled-expectations contract, the contract defined by:

Q∗ =

θZ
θ

q(θ)f(θ)dθ (83a)

q(θ, Q∗) = q∗(θ) (83b)

τ(θ, Q∗) = τ∗(θ) (83c)

must be a Q-optimal contract. From Lemma 2, q∗(θ), τ∗(θ) must therefore satisfy:

U1(q
∗(θ), θ) +W1(q

∗(θ), θ, Q∗)
[U12(q∗(θ), θ) +W12(q∗(θ), θ,Q∗)]

=
1− F (θ)
f(θ)

. (84)

τ∗(θ) = U(q∗(θ), θ) +W (q∗(θ), θ,Q∗)

−
θR

x=θ

[U2(q∗(x), x) +W2(q∗(x), x,Q∗)]dx,
(85)

which completes the proof.

Before proceeding further, define the gross consumption function:

Γ(Q) =

θZ
θ

q(θ,Q)f(θ)dθ, (86)

where q(θ, Q) is part of the unique Q-optimal contract associated with an expected gross consump-

tion Q. Two immediate consequences of this definition are:

Lemma 4 (a) For any Q-optimal contract q(θ,Q), τ(θ,Q), if Γ(Q) = Q, then the contract defined

by

q∗(θ) = q(θ, Q); (87)

τ∗(θ) = τ(θ, Q) (88)
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is an optimal fulfilled-expectations contract.

(b) Γ(0) > 0.

Part (a) follows directly from the definition of Γ(Q) and of an optimal fulfilled-expectations

contract, and part (b) from the fact that intrinsic value is always positive. We also need another

result — the strict monotonicity of U1(q,θ)
U12(q,θ)

, which follows from decreasing absolute risk aversion:

Lemma 5 If d
dθ (

−U11(q,θ)
U1(q,θ)

) < 0, then d
dq (

U1(q,θ)
U12(q,θ)

) < 0.

Proof:
d

dθ
(
−U11(q, θ)
U1(q, θ)

) =
−U112(q, θ)U1(q, θ) + U11(q, θ)U12(q, θ)

(U1(q, θ))2
, (89)

and
d

dq
(
U1(q, θ)

U12(q, θ)
) =

U11(q, θ)U12(q, θ)− U112(q, θ)U1(q, θ)
(U12(q, θ))2

. (90)

The denominators of the RHS (89) and (90) are both strictly positive, and the numerators are

identical. The result follows.

Proof of Proposition 1

Since W (q, θ, Q) = w(Q), it follows that W1(q, θ, Q) = W2(q, θ,Q) = W12(q, θ, Q) = 0. There-

fore, from Lemma 3, the optimal fulfilled-expectations contract satisfies:

U1(q
∗(θ), θ)

U12(q∗(θ), θ)
=
1− F (θ)
f(θ)

, (91)

and

τ∗(θ) = U(q∗(θ), θ) +w(Q∗)−
θZ

x=θ

[U2(q
∗(x), x)]dx, (92)

where Q∗ =
θR
θ

q∗(θ)f(θ)dθ. Comparing (91) with (30) yields

q∗(θ) = q0(θ), (93)

since Lemma 5 has established that U1(q,θ)
U12(q,θ)

is strictly monotonic in q. Therefore, Q∗ = Q0.

Consequently, comparing (92) with (31) yields:

τ∗(θ) = τ0(θ) +w(Q0). (94)

Similarly, from Lemma 2, for any expectation of gross consumption Q, the individual consumption

in any Q-optimal contract satisfies:

U1(q(θ, Q), θ)

U12(q(θ,Q), θ)
=
1− F (θ)
f(θ)

, (95)
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which implies that

q(θ,Q) = q0(θ) (96)

for all Q and θ. Therefore, (86), (91) and (96) imply that Γ(Q) = Q0 for all Q. Clearly, Γ(Q)

always has a unique fixed point Q0, which completes the proof.

Proof of Proposition 2

(a) Since W (q, θ, Q) = qw(Q), W1(q, θ,Q) = w(Q), and W2(q, θ, Q) = W12(q, θ,Q) = 0. The

necessary conditions now follow directly from Lemma 3.

(b) From Lemma 2, for any Q, individual consumption in the unique Q-optimal contract satis-

fies:
U1(q(θ, Q), θ) +w(Q)

U12(q(θ,Q), θ)
=
1− F (θ)
f(θ)

(97)

Existence: If w(Q) is bounded, this implies that U1(q(θ,Q), θ) is bounded for all θ, which in

turn implies that q(θ,Q) is bounded for all θ, since U11(q, θ) < 0. Therefore Γ(Q) is bounded. Since

Γ(0) > 0, this implies that a fixed point for Γ(Q) exists.

Uniqueness: Differentiating both sides of (97) with respect to Q and rearranging yields:

q2(θ,Q) =
w1(Q)

U112(q(θ, Q), θ)
1−F (θ)
f(θ) −U11(q(θ,Q), θ)

. (98)

Since U112(q(θ, Q), θ) ≥ 0, this implies that

q2(θ, Q) ≤ w1(Q)

−U11(q(θ, Q), θ) . (99)

From the conditions of the proposition for uniqueness, we know that w1(Q) < −U11(q, θ), which
when combined with (99) implies that

q2(θ, Q) < 1 (100)

Now, differentiating both sides of (86) with respect to Q yields

Γ1(Q) =

θZ
θ

q2(θ,Q)f(θ)dθ, (101)

which when combined with (100), implies that Γ1(Q) < 1 for all Q. This in turn implies that Γ(Q)

is a contraction, and since Γ(0) > 0, it has a unique and strictly positive fixed point.

(c) When w(Q) > 0, (39) implies that

U1(q
∗(θ), θ)

U12(q∗(θ), θ)
<
1− F (θ)
f(θ)

(102)
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From Lemma 1, we know that
U1(q

0(θ), θ)

U12(q0(θ), θ)
=
1− F (θ)
f(θ)

(103)

and therefore
U1(q

0(θ), θ)

U12(q0(θ), θ)
>
U1(q

∗(θ), θ)
U12(q∗(θ), θ)

(104)

From Lemma 5, we know that U1(q,θ)
U12(q,θ)

is strictly decreasing in q for all θ, which when combined

with (104) proves that q0(θ) < q∗(θ) for all θ.

(d) Consider the contract:

qFE(θ) = q0(θ) (105a)

τFE(θ) = τ0(θ) + q0(θ)W (Q0) (105b)

It is straightforward to establish that this is a feasible fulfilled-expectations contract. Under this

contract, the monopolist’s profits would be

Π =

θZ
θ

τ0(θ)f(θ)dθ +

θZ
θ

q0(θ)W (Q0)f(θ)dθ (106)

Using the definition of sn(θ) from (16), this implies that

Π =

θZ
θ

τ0(θ)f(θ)dθ +

θZ
θ

sn(θ)f(θ)dθ (107)

Profits under the optimal fulfilled expectations contract must be at least as high as Π. Based on

(107), this yields:
θZ

θ

τ∗(θ)f(θ)dθ ≥
θZ

θ

τ0(θ)f(θ)dθ +

θZ
θ

sn(θ)f(θ)dθ,

which proves the first part. Now denote the surplus of type θ under the optimal fulfilled-expectations

contract as s∗(θ), and the surplus of type θ under the base case contract as s0(θ). We know that

s∗(θ) =
θZ

x=θ

[U2(q
∗(x), x)]dx,

and

s0(θ) =

θZ
x=θ

[U2(q
0(x), x)]dx.

Since q∗(θ) > q0(θ), and U12(q, θ) > 0, this implies that s∗(θ) > s0(θ) for all θ. Therefore, the

monopolist does not appropriate all the surplus generated by the network effects, and the second

part of the result follows.
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Proof of Proposition 3

(a) SinceW (q, θ,Q) = qw(Q, θ),W1(q, θ,Q) = w(Q, θ),W2(q, θ, Q) = qw2(Q, θ), andW12(q, θ,Q) =

w2(Q, θ). The necessary conditions now follow directly from Lemma 3.

b) From Lemma 2, for any Q, individual consumption in the unique Q-optimal contract satisfies:

U1(q(θ,Q), θ) +w(Q, θ)

U12(q(θ,Q), θ) +w2(Q, θ)
=
1− F (θ)
f(θ)

(108)

Existence: If w(Q, θ) is bounded, this implies that U1(q(θ, Q), θ) is bounded, which in turn

implies that q(θ,Q) is bounded for all θ, since U11(q, θ) < 0. Therefore Γ(Q) is bounded, and the

result follows.

Uniqueness: Differentiating both sides of (108) with respect to Q and rearranging yields:

q2(θ,Q) =
w1(Q, θ)−w12(Q, θ)1−F (θ)f(θ)

U112(q(θ, Q), θ)
1−F (θ)
f(θ) −U11(q(θ,Q), θ)

. (109)

Since W123(q, θ,Q) ≥ 0, this implies that w12(Q, θ) ≥ 0. Also, we know that U112(q(θ,Q), θ) ≥ 0.
Therefore,

q2(θ, Q) ≤ w1(Q, θ)

−U11(q(θ, Q), θ) . (110)

From the conditions of the proposition for uniqueness, we know that w1(Q, θ) < −U11(q(θ, Q), θ),
which when combined with (110) implies that

q2(θ, Q) < 1 (111)

Now, differentiating both sides of (86) with respect to Q yields

Γ1(Q) =

θZ
θ

q2(θ,Q)f(θ)dθ, (112)

which when combined with (111), implies that Γ1(Q) < 1 for all Q. This in turn implies that Γ(Q)

is a contraction, and since Γ(0) > 0, it has a unique fixed point.

(c) Assume first that
U1(q

∗(θ), θ)
U12(q∗(θ), θ)

>
w(Q∗, θ)
w2(Q∗, θ)

. (113)

This implies that
U1(q

∗(θ), θ) +w(Q∗, θ)
U12(q∗(θ), θ) +w2(Q∗, θ)

<
U1(q

∗(θ), θ)
U12(q∗(θ), θ)

, (114)

which when combined with (43) yields:

U1(q
∗(θ), θ)

U12(q∗(θ), θ)
>
1− F (θ)
f(θ)

. (115)
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Also, we know that
U1(q

0(θ), θ)

U12(q0(θ), θ)
=
1− F (θ)
f(θ)

. (116)

(115) and (116) imply that
U1(q

0(θ), θ)

U12(q0(θ), θ)
<
U1(q

∗(θ), θ)
U12(q∗(θ), θ)

, (117)

which implies that q0(θ) > q∗(θ), since we know from Lemma 5 that d
dq (

U1(q,θ)
U12(q,θ)

) < 0.

Similarly, if
U1(q

∗(θ), θ)
U12(q∗(θ), θ)

<
w(Q∗, θ)
w2(Q∗, θ)

, (118)

this implies that
U1(q

∗(θ), θ) +w(Q∗, θ)
U12(q∗(θ), θ) +w2(Q∗, θ)

>
U1(q

∗(θ), θ)
U12(q∗(θ), θ)

, (119)

and the converse result follows from an analogous sequence of steps.

Proof of Proposition 4

Differentiating w(Q∗,θ)
w2(Q∗,θ) with respect to θ yields:

d

dθ
(
w(Q∗, θ)
w2(Q∗, θ)

) = 1− w(Q
∗, θ)w22(Q∗, θ)
(w2(Q∗, θ))2

. (120)

If w(Q∗, θ) is concave in θ, this implies that

d

dθ
(
w(Q∗, θ)
w2(Q∗, θ)

) > 1. (121)

Also,
d

dθ
(
U1(q

∗(θ), θ)
U12(q∗(θ), θ)

) = 1 +
U11(q

∗(θ), θ)q∗1(θ)
U12(q∗(θ), θ)

−U1(q
∗(θ), θ)[U112(q∗(θ), θ)q∗1(θ) + U122(q∗(θ), θ)]

(U12(q∗(θ), θ))2
.

(122)

It is straightforward (though tedious) to show that when one combines (122) with Lemma 5, the

fact that q∗1(θ) > 0, and either of the conditions on U(q, θ) in the proposition, one gets:

d

dθ
(
U1(q

∗(θ), θ)
U12(q∗(θ), θ)

) < 1. (123)

(a) Equations (121) and (123) together imply that if

U1(q∗(θ), θ)
U12(q∗(θ), θ)

<
w(Q∗, θ)
w2(Q∗, θ)

, (124)

then
U1(q∗(θ), θ)
U12(q∗(θ), θ)

<
w(Q∗, θ)
w2(Q∗, θ)

for all θ > θ. When combined with Proposition 3(c), the result

follows.

(b) From (43), we know that

U1(q
∗(θ), θ) +w(Q∗, θ)

U12(q∗(θ), θ) +w2(Q∗, θ)
= 0, (125)
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which implies that U1(q
∗(θ), θ) < 0, which in turn implies that

U1(q
∗(θ), θ)

U12(q∗(θ), θ)
<
w(Q∗, θ)
w2(Q∗, θ)

, (126)

since U12(q, θ), w(Q, θ) and w2(Q, θ) are all positive. Now, since q
∗(θ) is continuous, we know that

both
U1(q

∗(θ), θ)
U12(q∗(θ), θ)

and
w(Q∗, θ)
w2(Q∗, θ)

are continuous. Therefore, if

U1(q
∗(θ), θ)

U12(q∗(θ), θ)
>
w(Q∗, θ)
w2(Q∗, θ)

, (127)

then (126) and (127) imply that there is some θ̂ ∈ (θ, θ) such that
U1(q

∗(θ̂), θ̂)
U12(q∗(θ̂), θ̂)

=
w(Q∗, θ̂)
w2(Q∗, θ̂)

. (128)

Moreover, given (128), (121) and (123) imply that for θ < θ̂,

U1(q
∗(θ), θ)

U12(q∗(θ), θ)
>
w(Q∗, θ)
w2(Q∗, θ)

, (129)

and for θ > θ̂,
U1(q∗(θ), θ)
U12(q∗(θ), θ)

<
w(Q∗, θ)
w2(Q∗, θ)

. (130)

The result now follows from Proposition 3(c).

Proof of Proposition 5

Consider any expectation of gross consumption Q, and any Q-feasible contract qF (θ), τF (θ).

[IR] implies that:

U(qF (θ), θ) +w(Q)− τF (θ) ≥ U(α(θ), θ). (131)

Since U(qF (θ), θ) ≤ U(α(θ), θ), this implies that

τF (θ) ≤ w(Q) (132)

for all θ. Consequently, a pricing scheme that provides the monopolist with a payment of w(Q) from

each type has equal or higher profits than any Q-feasible contract. The only incentive-compatible

individual consumption under any contract of this kind is when customers of type θ are allocated

α(θ). This means that

q(θ,Q) = α(θ); (133)

τ(θ,Q) = w(Q) (134)

is Q-optimal. Defining

Qα =

θZ
θ

α(θ)f(θ)dθ, (135)
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this implies that Γ(Q) = Qα for all Q, which in turn implies that there is a unique optimal fulfilled-

expectations contract, and the result follows.

Proof of Proposition 6

This proof introduces some new notation. The notation follows Jullien (2000), since Proposition

3 of that paper is used to establish part of this result.

For any expectation of gross consumption Q, define:

l(γ, θ, Q) = argmax
q
U(q, θ) + qw(Q)− U2(q, θ)γ − F (θ)

f(θ)
. (136)

It follows immediately that

l(1, θ, Q) = qm(θ, Q), (137)

and that l(0, θ,Q) ≥ β(θ,Q) for all θ, which implies that l(0, θ,Q) > α(θ) for all θ.

Next, the unique incentive-compatible contract that implements Û(θ) — that is, the unique

contract under which the surplus of type θ is Û(θ) — can be shown to be:

q̂(θ) = α(θ); (138)

τ̂(θ) = α(θ)w(Q). (139)

Therefore, the set Θ = {θ : l(1, θ,Q) ≤ q̂(θ) ≤ l(0, θ,Q)} reduces to:

Θ = {θ : qm(θ,Q) ≤ α(θ)}. (140)

Also, define

γ̂(θ,Q) = γ : q̂(θ) = argmax
q
U(q, θ) + qw(Q)− U2(q, θ)γ − F (θ)

f(θ)
(141)

Since q̂(θ) = α(θ), and U1(α(θ), θ) = 0, first-order conditions for (141) yield:

γ̂(θ, Q) = F (θ) +
f(θ)w(Q)

U12(α(θ), θ)
(142)

Finally, define:

H(γ, θ) =
γ − F (θ)
f(θ)

The following lemma is straightforward, and is stated without proof.

Lemma 6 If 1−F (θ)f(θ) is non-decreasing for all θ, then H2(γ, θ) ≤ 0 for all θ, γ such that H(γ, θ) ≥ 0.

The next lemma can now be proved:
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Lemma 7 If ∂
∂θ (

U11(α(θ),θ)
U12(α(θ),θ)

) ≤ 0, then l2(γ̂(θ, Q), θ,Q) ≤ q̂1(θ)

Proof: By the definition of γ̂(θ, Q) in (141), and of l(γ, θ, Q) in (136), we know that

l(γ̂(θ, Q), θ, Q) = q̂(θ) = α(θ). (143)

From the first order conditions for (136), we know that

U1(l(γ, θ,Q), θ) +w(Q) = U12(l(γ, θ,Q), θ)
γ − F (θ)
f(θ)

. (144)

Differentiating both sides of (144) with respect to θ and rearranging yields:

l2(γ, θ,Q) =
U12(l(γ, θ,Q), θ)(1−H2(γ, θ))− U122(l(γ, θ,Q), θ)H(γ, θ)

U112(l(γ, θ, Q), θ)H(γ, θ)− U11(l(γ, θ,Q), θ) . (145)

Substituting in γ̂(θ,Q) and using (143) yields:

l2(γ̂(θ, Q), θ,Q) =
U12(α(θ), θ)(1−H2(γ̂(θ,Q), θ))− U122(α(θ),Q), θ)H(γ̂(θ, Q), θ)

U112(α(θ), θ)H(γ̂(θ, Q), θ)− U11(α(θ), θ) . (146)

Since q̂(θ) = α(θ), and U1(α(θ), θ) = 0 by definition, it follows that:

q̂1(θ) =
U12(α(θ), θ)

−U11(α(θ), θ) . (147)

Comparing equations (146) and (147), and using the fact that U11(q, θ)U12(q, θ)H2(γ, θ) ≥ 0, it

follows that l2(γ̂(θ, Q), θ,Q) ≤ q̂1(θ) if:

U12((α(θ), θ))U112(α(θ), θ)− U11(α(θ), θ)U122(α(θ), θ) ≤ 0, (148)

which is precisely the condition implied by ∂
∂θ (

U11(q,θ)
U12(q,θ)

) ≤ 0. The result follows.

It was shown in Section 5.1 that the problem of finding an optimal contract which deters entry

was equivalent to finding an optimal contract with type-dependent participation constraints. The

following result therefore holds, based on Jullien (2000):

Lemma 8 The Q-optimal contract which deters entry satisfies:

(a) If θ ∈ Θ,

q(θ, Q) = α(θ); (149)

τ(θ) = a(θ)w(Q).

(b) If θ /∈ Θ, then:

q(θ, Q) = qm(θ,Q); (150)

τ(θ) = U(qm(θ,Q), θ) + qm(θ,Q)w(Q)− U(α(θ), θ)− [
θZ

θ̂(Q)

(U2(q
m(x,Q), x)− U2(α(x), x))dx],
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where Θ = {θ : qm(θ,Q) ≤ α(θ)}, and θ̂(Q) = θ : qm(θ,Q) = α(θ).

In addition, if Θ is empty, then for all θ:

q(θ, Q) = qm(θ,Q), (151)

τ(θ) = U(qm(θ, Q), θ) + qm(θ,Q)w(Q)− U(α(θ), θ)− [
θZ

θ

(U2(q
m(x,Q), x)− U2(α(x), x))dx].

Proof: Lemma 7 ensures that the problem of finding a Q-optimal contract satisfies all the condi-

tions for Proposition 3 of Jullien (2000) to apply. The expressions for q(θ,Q) follow immediately.

The expressions for τ(θ, Q) follow by imposing incentive-compatibility.

Now, recall the definitions of Qm, Qα from the proposition, and Γ(Q) from the proof of propo-

sition 2:

Qm = Q : Q =

θZ
θ

qm(θ,Q)f(θ)dθ (152)

Qα = Q : qm(θ,Q) = α(θ), (153)

Γ(Q) =

θZ
θ

qm(θ,Q)f(θ)dθ (154)

Clearly, Qm is a fixed point of Γ(Q). Also define Γ̂(Q) as

Γ̂(Q) =

θ̂(Q)Z
θ

α(θ)f(θ)dθ +

θZ
θ̂(Q)

qm(θ,Q)f(θ)dθ, if θ̂(Q) exists; (155)

Γ̂(Q) = Γ(Q) otherwise. (156)

Now, from (98). we know that

qm2 (θ, Q) =
w1(Q)

U112(qm(θ,Q), θ)
1−F (θ)
f(θ) − U11(qm(θ,Q), θ)

. (157)

The RHS of (157) is strictly positive since w1(Q) > 0, U112(q, θ) ≥ 0, and U11(q, θ) < 0. Therefore,
qm2 (θ,Q) > 0 for all Q. As a consequence, if Q

α < Qm, then qm(θ, Qα) < qm(θ, Qm), which in turn

implies that qm(θ,Qm) > α(θ). The set Θ is therefore empty, and this establishes part (a), based

on Lemma 8.

Now, differentiating both sides of (155) and (156) with respect to Q yields:

Γ̂1(Q) =

θZ
θ̂(Q)

qm1 (θ, Q)f(θ)dθ, if θ̂(Q) exists; (158)

Γ̂1(Q) = Γ1(Q) otherwise. (159)
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Since qm2 (θ,Q) > 0, this implies that Γ̂1(Q) ≤ Γ1(Q), and the inequality is strict if θ̂(Q) > θ.

Consequently, under the conditions for uniqueness in Proposition 2, both Γ(Q) and Γ̂(Q) have

unique strictly positive fixed points.

If Q ≥ Qα, Γ̂(Q) = Γ(Q). As a consequence, if Qα > Qm, this means that the fixed point of

Γ̂(Q) has to lie in (Qm,Qα), because we know that Γ̂(Q) > Γ(Q) for Q < Qα, which means it

cannot have a fixed point at Qm, which in turn implies that if it has a fixed point greater than Qα,

this violates the uniqueness of the fixed point of Γ(Q).

Using the fact that the unique optimal fulfilled-expectation equilibrium has gross consumption

that is the fixed point of Γ̂(Q), part (b) of the result follows. This completes the proof.
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