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1 Introduction

In bureaucratic organizations such as firms, government agencies, and militaries, some
decisions are made through a hierarchical structure. Actions or control variables are as-
sociated with operatives at the bottom of the hierarchy. The upper tiers of the hierarchy
perform the administrative task of coordinating the operatives in response to information
about the environment. Information flows up from the operatives; each node of the hierarchy
receives information from its subordinates, aggregates this information, and communicates
to its superior. Decisions are recursively disaggregated through a flow of information down
the hierarchy. For example, resources may be allocated this way: each node receives a
budget from its superior, and divides this budget among its subordinates. The hierarchy,
which may be depicted by an organization chart, is a coarse description of the structure
of decision making, rather than a detailed description of the flow of information between
every member (clerk, secretary, manager, technician) of the administrative staff.

This paper studies a reduced-form model of such hierarchical decision procedures. It
views these procedures as ways for organizations to make effective decisions in environments
that are complex relative to the cognitive abilities of any single human. The complexity is
tied to the changing nature of the environment and the scale of the operations.

In a conventional model with fully rational agents, a single manager can run a firm of any
size or control any number of its operatives, instantly responding to new information. Even
if this agent is controlling other agents with conflicting objects and private information, the
manager can use a direct revelation mechanism in which the manager receives all information
and makes decisions centrally, according to a prearranged rule.

However, because humans can only make use of limited amounts of information in a
given period of time, a single person can effectively control operations if their scale is
small or the environment is changing slowly. By sharing the administrative task among
many agents, information can be aggregated and used more quickly because the agents can
perform certain tasks concurrently (Radner (1993)); this is an analogue to the speed-up
entailed by parallel processing in computer systems. Still, the nature of coordination limits
the speed-up that such decentralization can achieve, because not all the different tasks
into which decision making can be divided can be performed concurrently. This inexorable
increase in delay can lead to another form of decentralization. By having some decisions
made in lower levels of a hierarchy, these decisions can be made using less aggregate and
hence more recent information.

This current paper studies a reduced-form model of such decision-making hierarchies.
We set up the model by first describing informally the parameters such hierarchical pro-
cedures may have and how the performance should depend on these parameters and then
stating a formula for the costs of a hierarchy as a function of these parameters. We hope
that some readers will become sufficiently curious (or suspicious) to read Van Zandt (2002b,
2002a), in which the formula is derived “from first principles”, using an explicit model of
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the resource allocation problem, of the computational abilities of the administrative staff,
and of the decision procedures that lie behind each hierarchical form. However, the current
paper is self-contained.

Our goal is to characterize (i) the costs and benefits of decentralized decision making, (ii)
the shape of the hierarchies, (iii) returns to scale, and (iv) how these properties depend on
the speed at which the environment changes. We begin, in Section 3, with a quantification
of the costs and benefits of decentralized decision making. The decision-theoretic value of
such decentralization is that intermediate offices can use more recent information than their
superiors when disaggregating allocations. There is a decision-theoretic cost: the more tiers
through which the period-t allocation decisions are disaggregated, the earlier an upper-
level office must inform its subordinates of their period-t allocations. The managerial cost
of decentralization is that passing decisions through subordinates increases the amount of
calculation that must be done.

In Section 4, we characterize the returns to scale of the hierarchical procedures. If
the number of tiers is fixed, and hence decentralization of decision making is limited, then
there is a bound on the optimal size of hierarchies even if the managerial wage is zero.
However, when the number of tiers in the optimal hierarchies is allowed to increase with
the number of operatives, computational delay alone does not inexorably lead to eventually
decreasing returns to scale. This is because expected shop costs can always be reduced
by joining independent hierarchies under a central office that coordinates allocations to
these hierarchies. The former decentralization of decision making between independent
organizations then becomes decentralized decision making within a single organization.
Nevertheless, when instead the wage is positive and the hierarchies are large, the value
of this coordination is lower than the administrative cost because of cumulative delay.
Therefore, managerial wages combined with delay lead to a bounded size of hierarchies.

In Section 5, we characterize the spans in optimal hierarchies. We show, for example,
that spans are single-peaked and that, in particular, then tend to decrease moving down the
hierarchy. In Section 6, we characterize how the optimal firm size and shape of the hierar-
chies depend on the speed with which the environment changes. We find that organizations
are smaller and more internally decentralized the more rapidly the environment changes.
An increase in managerial speed, which might result from improvements in information
technology, has the opposite effect. This provides a framework for the empirical study of
trends in firm structure (which have involved both downsizing and mergers) and how they
relate to improvements in information technology and the endogenous increases in the rate
of change of firms’ strategic environments.

2 A model decision-making hierarchies

We consider a model of hierarchical decision procedures, coordination mechanisms, or
organizations. It is a reduced form of the model of balanced CF hierarchies, developed in
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Van Zandt (2002b, 2002a) from two components: (a) a stochastic control problem, which
is to allocate resources to “shops” whose valuations or payoffs change over time, and (b) a
model of the information processing capabilities of the managers who decide the resource
allocations.

Each organization is represented by a hierarchy, which is a tree whose leaves are the
shops or recipients of resources and whose nonleaf nodes are multiperson offices that are the
decision-making units. The shops’ resource allocations are periodically updated through a
recursive downward flow of decisions through the hierarchy. Each office is informed by its
superior of the amount of resource available for the shops below it in the hierarchy, and the
office decides how to divide this amount among its subordinates. These decisions require
aggregate information about the shops’ payoff functions, so that each office can implicitly
calculate a shadow price and the marginal valuations of its subordinates. This aggregation
occurs periodically through a recursive upward flow of information. Each office receives
information about its subordinates and aggregates this information, both in order to pass
this information to its superior and in order to allocate resources to its subordinates.

The key information processing limitation is that it takes managers time to process
information. This time is costly because of managerial wages that must be paid. A more
important implication, however, is that decisions are always based on old information.
The organizational structure determines how effectively the organization keeps up with its
changing environment. The role of the recursive disaggregation of allocations, which is a
form of decentralized decision making, is as follows. If there is a single office that makes
all decisions, then all resource allocations are based on very aggregate and hence very old
information. By delegating some decisions to offices lower in the hierarchy, each of which is
above a smaller number of shops than is the root node, these decisions are made using less
aggregate and hence more recent information.

To obtain a simple model, Van Zandt (2002b, 2002a) imposes considerable symmetry
by assuming that the managers are homogeneous and the shops are identical (or, more
precisely, that the shops’ payoff functions are i.i.d.) and by restricting attention to balanced
hierarchies. A hierarchy is balanced if all shops are the same distance from the root and if
each office in the same tier has the same span or number of subordinates.

The balanced hierarchies have a simple parameterization. We index the tiers of such
a hierarchy from bottom to top by h = 0, 1, . . . , H, where H is called the height of the
hierarchy. We denote the number of nodes in tier h by qh. Since there should always be
a single root, we set qH = 1. Since the shops are in the bottom tier, q0 is the number of
shops; sometimes this number is fixed and sometimes we allow it to vary. As a continuous
approximations, we treat sh � qh−1/qh as the span of each office in tier h. To do anything
useful, an office has to have at least two subordinates, and so we require that sh ≥ 2 for
h = 1, . . . , H. Otherwise we ignore integer constraints on the numbers of nodes in each tier.
Then the set of hierarchies of height H is

QH �
{
q = 〈q0, q1, . . . , qH−1〉 ∈ R

H
∣∣ qh−1/qh ≥ 2 ∀h = 1, . . . , H

}
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and the set of hierarchies of height H with n shops is QH(n) � {q ∈ QH | q0 = n}.
The underlying statistical model, based on Geanakoplos and Milgrom (1991), is such

that the total payoff for the policy that the hierarchy calculates can be decomposed into the
no-information payoff, which we normalize to zero, and the value of information processing
by each office. The value of information processing by an office depends on both the
hierarchical structure and on the information that the office implicitly uses to allocate
resources to its subordinates. Recall that the office uses aggregate information about the
shops’ payoffs. The underlying model is also such that an aggregate datum is a sufficient
statistic for the data from which it is calculated. However, information processing takes
times and the resulting lags affect the quality of the office’s information.

We denote by dh the delay between when an office in tier h collects information about
its subordinates and when it allocates resources to these subordinate. This delay is divided
between delay in aggregating information and delay in disaggregating resource allocations.
It adds dh not only to the lag of the office’s own information but also to the lag of the
information of offices further up the hierarchy: the aggregation delay slows down how quickly
the office can pass information up to its superior; the disaggregation delay means that the
superior has to inform the office of its resource allocations with a lead time. Therefore, the
cumulative lag of the information that an office in tier h uses about shops below it in the
hierarchy is Lh �

∑h
η=1 dη.

The parameters of the stochastic processes that govern the payoff functions are σ2 > 0,
which measures the overall volatility of the environment, and b ∈ (0, 1), which measures
the correlation between old and new information and hence inversely measures the speed
at which the environment is changing. The value of the information processing by an office
in tier h is

vh � σ2(sh − 1)bLh .(2.1)

Since there are qh offices in tier h and since qhsh = qh−1, the total value of the information
processing by offices in tier h is

qh
(
σ2(sh − 1)bLh

)
= σ2(qh−1 − qh)bLh .

Therefore, the payoff of the hierarchy is

UH(q) � σ2
H∑

h=1

(qh−1 − qh)bLh .

To complete the model, we specify, for each tier h, the delay dh and the managerial
cost of each office in that tier. These are derived from a model of information processing.
Consider first the managerial cost. The workload of calculating each resource allocation is
proportional to sh. We introduce a parameter µ that is a linear measure of how long to
takes managers to perform tasks, so that the workload is µsh. Let w be the managerial
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wage, so that the total managerial cost of the office is wµsh. Since there are qh offices in
tier h and since qhsh = qh−1, the total managerial cost of the offices in tier h is wµqh−1 and
the total managerial cost of the hierarchy is CH(q) � wµ

∑H−1
h=0 qh.

The delay of an office in tier h would also equal µsh if each resource allocation were
calculated by a single manager. However, by decentralizing information processing within
the office, the delay can be reduced to dh � µ(α + log sh). The delay µ log sh is from the
aggregation of information, which is the essence of coordination in this decision problem.
It increases with the amount of data to be aggregated because the operations cannot all
be performed concurrently. The delay µα is from statistical filtering of the data and disag-
gregation of the resource allocations. It does not depend on sh because some steps involve
a single operation no matter how many subordinates the office has and others involve op-
erations that can be performed concurrently for all the subordinates. For example, once
information has been aggregated and implicitly a shadow price has been calculated, the
individual resource allocations can be computed concurrently.

Since dh = µ(α + log sh), we have Lh = µ(αh + log(s1 · · · sh)). Define nh � s1 . . . sh =
q0/qh, which is the number of shops below an office in tier h. Then Lh = µ(αh + log nh);
this equals the delay µαh in having information pass up and down through h levels and the
cumulative delay µ log nh in aggregating information about nh shops.

We have thus defined the payoff UH(q) and the cost CH(q) of a hierarchy of height H.
Its profit is defined to be ΠH(q) � UH(q) − CH(q). Combining the various formulae, we
have

ΠH(q) = σ2
H∑

h=1

(qh−1 − qh)(bµ)α+log q0/qh − wµ
H−1∑
h=0

qh .(2.2)

Since the height of hierarchies can vary, we also denote a hierarchy by H = 〈H, q〉, where
H ∈ {1, 2, . . .} and q ∈ QH . We then denote its payoff, cost, and profit by U(H), C(H), and
Π(H), respectively. For example, Π(H, q) is the same as ΠH(q). Finally, since the number
of shops can vary, we want to allow for the special case of a hierarchy H that has a single
shop and hence no coordination; then H = 0, q0 = 1, and U(H) = C(H) = Π(H) = 0.

The main exogenous parameters that interest us are σ2, b, w, and µ. The main purpose
of this paper is to characterize optimal hierarchies and how they depend on these four
parameters. Note that this dependence is only through bµ and wµ/σ2; that is, there are
only two degrees of freedom. To simplify notation in what follows, we defineW � w/σ2 and
we normalize µ = 1 until Section 7, when we consider what happens to optimal hierarchies
when µ varies.

3 Benefits and costs of decentralized decision making

If a hierarchy has just two tiers (H = 1), then the root is the only office and it allocates
resources directly to the shops. If instead the hierarchy has more than two tiers, then there
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are offices that allocate resources to other offices—thus, decision making is decentralized.
The advantage of having an office in tier h > 1 allocate resources to an office in tier h− 1
rather than directly to subordinates in tier h−2 is that the tier-(h−1) office can suballocate
resources using less aggregate and hence more recent information than that used by the
tier h office. We quantify the benefits and costs of such decentralized decision making by
comparing the profit before and after an entire tier of offices is eliminated.

Consider, then, a hierarchy H = 〈H, q〉 with height H ≥ 2. Let h ∈ {1, . . . , H − 1}.
Let H′ be the hierarchy obtained by eliminating all offices in tier h. We use the standard
notation for H′ (augmented by primes), with the following exception: The tiers in H′ are
numbered 0, 1, . . . , h − 1, h + 1, . . . , H, so that corresponding tiers in H and H′ have the
same number of nodes.

Proposition 3.1 U(H)− U(H′) = ∆b −∆c, where

∆b = σ2(qh−1 − qh)bLh

(
1− blog sh+1

)
and

∆c = σ2
H∑

η=h+1

(qη−1 − qη)bL′
η(1− bα) .

C(H)− C(H′) = wqh.

Proof. Observe that the value of information for offices in tiers 1, . . . , h− 1 is the same in
H and H′. Hence,

(3.1) U(H)− U(H′) =


σ2(qh−1 − qh)bLh + σ2

H∑
η=h+1

(qη−1 − qη)bLη




−

σ2(qh−1 − qh+1)bL

′
h+1 + σ2

H∑
η=h+2

(qη−1 − qη)bL′
η


 .

By substituting

σ2(qh−1 − qh+1)bL
′
h+1 = σ2(qh−1 − qh)bL′

h+1 + σ2(qh − qh+1)bL
′
h+1

and rearranging, we obtain

U(H)− U(H′) = σ2(qh−1 − qh)(bLh − bL′
h+1)− σ2

H∑
η=h+1

(qη − qη+1)(bL
′
η − bLη) .(3.2)

For η ≥ h+ 1, the offices in “tier η” in H′ are actually in tier η − 1. Therefore,

L′
η = α(η − 1) + log q0/qη = Lη − α .
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Hence, bL
′
η − bLη = bL

′
η(1− bα). Therefore, the second term in equation (3.2) is equal to ∆c

as defined in Proposition 3.1.

Since L′
h+1 = αh + log s′h+1 and Lh = αh + log sh, we have L′

h+1 − Lh = log s′h+1 −
log sh = log s′h+1/sh. Since also shsh+1 = s′h+1, we have L′

h+1 − Lh = log sh+1. Therefore,
bLh −bL′

h+1 = bLh(1−blog sh+1), and the first term in equation (3.2) is equal to ∆b as defined
in Proposition 3.1.

Since q′ has qh fewer offices than q, its administrative cost is wqh lower. �

Here is the interpretation. Treat H′ as the status-quo hierarchy, and let some of the
decision making by offices in tier h+ 1 be decentralized to a new set of qh offices in a new
tier h. Then ∆b is the increase in payoff due to the fact that offices in tier h in H use data
that is log sh+1 periods more recent than the information used by offices in tier h + 1 in
H′, due to the additional aggregation delay of the tier-(h + 1) offices. This is the benefit
of decentralization. ∆b is the decrease in payoff due to the fact that the cumulative lag of
offices in tiers η ≥ h + 1 is α periods larger in H than in H′, because of additional delay
in updating the prediction of the aggregate payoff of the new offices and in disaggregating
resource allocations to these offices. This is the decision-theoretic cost of decentralization.
Furthermore, the administrative cost is wqh higher in H than in H′ because of the cost of
performing the additional operations just mentioned.

4 Returns to scale

4.1 Motivation

Although the hierarchies we study permit internal decentralization, they still resemble
tightly integrated, bureaucratic organizations such as firms and governments. In reality,
there appear to be limits to the scale of such integration, since economic activity is carried
out by many independent organizations that interact through spot markets or not at all. It
has been conjectured, at least since the 1930’s, that information processing constraints are
a source of such limits.1

A proper model of these limits would allow for market interaction, but we address them
using a simpler extension to our model in which allocations can be coordinated by multiple
hierarchies that do not interact at all. Such a collection of independent hierarchies is called
a forest. The total profit of a forest {H1, . . . ,HM} is

∑M
m=1 Π(HM ). We say that, for a

given number n of shops, a forest with a total of n shops is optimal if it has the highest
profit of all such forests. Is there a limit to the size of the hierarchies in optimal forests?

If there were no information processing constraints, full integration would be optimal
because larger organizations can take advantage of greater gains from trade and risk sharing.

1See Van Zandt (1998) and Van Zandt and Radner (2001) for references and discussion.
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(This benchmark model is obtained by considering a one-tier hierarchy with zero lag and
zero administrative cost. The profit is then σ2(n − 1); the per-unit profit is σ2(n − 1)/n,
which is increasing in n.) Thus, it is significant if this conclusion is reversed by the presence
of information processing constraints.

This exercise tends to overestimate the optimal size of organizations, because it pre-
sumes that the coordination of resource allocations is only possible within the hierarchical
procedures constructed in this paper, and hence allocations between independent organiza-
tions cannot be coordinated through markets. However, our main conclusion is that there
is a limit to firm size due to the combined effects of delay and administrative expenses; the
bound would become smaller rather than cease to exist if we were to allow coordination
within markets. A full model of the determinants of organization size, which is a question
of what transactions take place within bureaucratic organizations and what transactions
take place in markets, would have to include a model of decision procedures that resemble
market mechanism.

4.2 Net value of the root

A tool we use fo characterizing the size of hierarchies in optimal forests is the net
value V net

R of the root of a hierarchy H = 〈H, q〉, which is defined as follows. Suppose
that the root is eliminated, so that the sH subhierarchies become independent hierarchies.
The difference between the payoff of the original hierarchy and the total payoff of the
independent subhierarchies is equal to the value of the roots information, vH = σ2(sH −
1)bLH . The administrative cost falls by wsH , because the sH offices in tier H − 1 are not
longer subordinates of any office. Therefore, the net fall in profit due to this divestiture is

V net
R � vH − wsH = σ2(sH − 1)bLH − wsH .(4.1)

If V net
R is positive, we now that the subhierarchies cannot exist independently in an optimal

forest; if V net
R is negative, then we know that the hierarchy cannot exist in an optimal forest.

4.3 Benchmark: zero wage

As a benchmark, consider optimal forests when (a) the managerial wage is zero and (b)
we limit internal decentralization by bounding the height of hierarchies.

For example, suppose we allow for no decentralization at all, so that each hierarchy has
height 0. The profit as function of the number n of shops in the hierarchy is

σ2

(
n− 1
n

)
bL1 .

We can see that if L1, which is the center’s delay, were constant as n increased, then
the per-shop payoff would increase monotonically. However, L1 = α + logn and hence
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Figure 4.1. Per-shop payoff for 2-tier and 3-tier BCF hierarchies, as a function of
organization size n. Parameter values are σ2 = 100, b = .95, and w = 0.

limn→∞ L1 = ∞. Therefore, limn→∞ bL1 = 0 and the per-shop payoff converges, as n→ ∞,
to the per-shop payoff when there is no coordination. That is, asymptotically the per-shop
realized gains from trade are zero, because delay causes the allocations to be based on old
information.

In fact, there is a limit to firm size even whenever the number of tiers of a hierarchy
is bounded. For three-tier balanced hierarchies, it is only the root node whose cumulative
lag increases inexorably with firm size (it is at least logn). As n increases, the root node
becomes irrelevant and the size of the subhierarchies under the root converges to the size
that maximizes the per-shop payoff for two-tier hierarchies. However, at intermediate values
of n, the root’s information processing is valuable. Figure 4.1 shows the per-shop payoff
for optimal two- and three-tier balanced hierarchies as a function of n when the wage is
zero (for b = .95 and σ2 = 100). Observe that the per-shop payoff for three-tier hierarchies
is higher than for two-tier hierarchies (illustrating the benefit of decentralization), but the
per-shop payoff is eventually decreasing for both classes of hierarchies.

A complete proof that there is a bound on firm size when we limit decentralization is
given in Van Zandt (2002b, Section 6) for general (nonbalanced) CF hierarchies. We note
simply that the proof is readily adapted to this model of balanced hierarchies.

Next suppose that we do not limit the height of the hierarchies. Suppose that a forest
hasM identical hierarchies of height H with a total of n shops and that these are integrated
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under a new root, to form a new hierarchy of height H+1. This integration does not affect
the value of information processing of any of the offices in the existing hierarchies. The
change in payoff is equal to the value of the new root’s information: σ2(M−1)bα(H+1)+log n.
Since this value is always positive, the integration raises the profit of the forest. We have
thus proved the following proposition.

Proposition 4.1 Suppose that w = 0. Then no optimal forest has two hierarchies of the
same size. Therefore, there is no bound on firm size.

Van Zandt (2002b) proves a stronger result for general CF hierarchies: that any optimal
forest has a single hierarchy if w = 0. The proof is similar to the one given above. Since the
value of the root of any CF hierarchy is positive, the payoff can be increased by merging
independent CF hierarchies in a CF forest. The proof does not work for balanced hierarchies
because, if two hierarchies are not identical, then merging them under a new root does not
result in a balanced hierarchy.2

4.4 Positive managerial wage

Next we establish that there is a limit to firm size whenever w > 0. A necessary condi-
tion for the optimality of a forest is that the profit cannot be increased by eliminating the
root of the one of the hierarchies to form independent hierarchies. If the hierarchy has height
H and n shop, then the per-subordinate value of the root’s information processing is ap-
proximately σ2bαH+log n, which decreases to zero as limn→∞. However, the per-subordinate
cost wsH/sH = w of the root’s information processing is constant. Therefore, for large n,
V net

R < 0.

Proposition 4.2 If w > 0, then max{1,W 1/ log b} is a limit to firm size.

Proof of Proposition 4.2. From equation (4.1), the condition V net
R ≥ 0 implies

sR
(
σ2bαH+log n − w) ≥ σ2bαH+log n

⇒ σ2bαH+log n − w > 0
⇒ blog n > w/σ2

⇒ n < W
1

log b .

This formula applies only when the r.h.s. is at greater than 2. Otherwise, whenW 1/ log b ≤ 2,
the optimal firm size is 1 and there should be no administrative apparatus coordinating
allocations. �

2A proof for balanced hierarchies could involve showing that the maximum per-shop payoff for hierarchies

is an increasing function of the number of shops, but we have not attempted to prove or test this conjecture.
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Thus, there are limits to the size of hierarchies because, in a large hierarchy, the central
office is using such old information that the value of its decisions is less than the wages
that must be paid to the agents in this office. In other words, the central office is too far
removed from the daily operations of the organization, not in a spatial sense nor due to a
lack of access to raw data about the daily operations, but because of the cumulative delay
in aggregating information about these operations.

5 Optimal structure of the hierarchical procedures

In this section, we study the hierarchies that maximize profit for fixed height and number
of shops or that maximize per-shop profit for fixed height and endogenous number of shops.
When the number of shops is endogenous, we are treating the set of potential shops as if
it were infinite or at least large, so that the forest that maximizes profit consists of many
hierarchies, each of which maximizes per-shop profit without constraints on the number of
shops. In each case, we refer to the profit-maximizing hierarchies as optimal hierarchies.

We characterize the optimal hierarchies by studying the first-order conditions of

max
q1,...,qH−1

ΠH(q0, q1, . . . , qH−1) and(5.1)

max
q0,q1,...,qH−1

1
q0
ΠH(q0, q1, . . . , qH−1)(5.2)

without paying attention to the integer constraints on the number of managers. The error
from ignoring these constraints is smaller for lower tiers in the hierarchy, which have more
managers. Leaving this caveat aside, we show, in each of the two cases, that a solution to
the first-order conditions corresponds to a unique global maximum.

Consider first optimal hierarchies for fixed height and number of shops.

Proposition 5.1 ΠH is a strictly concave function of 〈q1, . . . , qH−1〉. Therefore, a solution
to the first-order conditions of equation (5.1) corresponds to a unique global maximum.

Proof. Proposition 4.4 of Van Zandt (2002a) demonstrates the strict concavity of UH .
(Note that the “proof” of Proposition 4.4 relies in part on a numerical test.) Since ΠH(q) =
UH(q)− CH(q) and CH is linear, ΠH is strictly concave. �

Proposition 5.2 The tier sizes 〈q1, . . . , qH−1〉 satisfy the first-order conditions for maxi-
mizing profit for fixed H and q0 if and only if the spans 〈s1, . . . , sH〉 satisfy s1 · · · sH = q0
and

sh = 1− 1
log b

+
bdh+1

log b
− W

bLh log b
for h = 1, . . . , H − 1(5.3)

(recall that W � w/σ2).
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Proof. See Appendix A. �

One conclusion we can derive from these first-order conditions is that the spans are
single-peaked.

Corollary 5.1 The spans 〈s1, . . . , sH〉 that solve equation (5.3) and s1 · · · sH = q0 are
single-peaked. That is, for h = 2, . . . , H − 1, if sh−1 ≥ sh then sh > sh+1.

Proof. Let h ∈ {2, . . . , H − 1}. We prove the contrapositive: if sh ≤ sh+1, then sh−1 < sh.
Compare sh−1 and sh as defined by equation (5.3). It is always true that Lh−1 < Lh;
therefore, since log b < 0, the final term in equation (5.3) is strictly smaller for sh−1 than
for sh. If sh ≤ sh+1, then also dh ≤ dh+1 and the second-to-last term in equation (5.3) is
weakly smaller for sh−1 than for sh. Therefore, sh−1 < sh. �

Next we consider the hierarchies that maximize per-shop profit for fixed H but endoge-
nous q0. If H were endogenous, then such a maximization problem would have a solution
if and only if w > 0. (We showed in Section 4 that there is a bound on firm size if and only
if w > 0.) However, for fixed H, there is a bound on firm size even if w = 0 because fixing
H constrains the internal decentralization of decision making.

Proposition 5.3 A solution to the first-order conditions of equation (5.2) corresponds to
a unique global maximum.

Proof. See Appendix A. The proof uses a change of variables to obtain a strictly-concave
objective function. The strict concavity is demonstrated using a combination of analytic
and numerical results. �

Proposition 5.4 For fixed H, 〈q0, q1, . . . , qH−1〉 satisfy the first-order conditions for max-
imizing per-shop profit if and only if the spans 〈s1, . . . , sH〉 satisfy equation (5.3) and

sH = 1− 1
log b

− W

bLH log b
.(5.4)

Proof. See Appendix A. �

When w = 0, equations (5.4) and (5.3) provide a recursive formula for the unique
solution to the first-order conditions, and this solution does not depend on σ2 or H. That
is, from the top down, the optimal CF hierarchies look alike, whatever is the fixed height
of the hierarchies. When w > 0, equations (5.4) and (5.3) do not give a recursive formula,
because bLh is a function of s1, . . . , sh−1. However, these equations still provide a useful
characterization of the optimal span which aids in their numerical calculation and which
can be used to derive further qualitative results. For example, the next proposition states
that the spans of an optimal hierarchy decrease from upper to lower tiers.
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Proposition 5.5 Let s1, . . . , sH be the solution to equations (5.4) and (5.3), for W < bα.
Then sh > sh−1 for h = 2, . . . , H − 1. If w = 0, or if w > 0 and H maximizes per-shop
profit, then also sH > sH − 1.

Proof. See Appendix A. �

6 Comparative statics

When w = 0, the optimal hierarchies depend only on the parameter b. When w >

0, they also depend on the ratio W � w/σ2. In this section, we characterize how the
optimal hierarchies depend on these parameters. We are particularly interested in how
organizational size and structure depend on b, which inversely measures the speed at which
the environment changes.

Consider first optimal firm size. From Proposition 4.2, max{1,W 1/ log b} is a bound on
firm size. IfW ≥ 1, then the optimal firm is 1: there is no information processing. Therefore,
we restrict attention throughout this section to 0 ≤W < 1. Then, since 1 < log b < 0, this
bound is decreasing in W and increasing in b. Furthermore, as b ↑ 1, the bound increases
to infinity.

To actually show that firm size increases as W ↓ 0 or b ↑ 1, we need to derive a lower
bound on firm size. Let AΠ(n) be the maximum per-shop profit for hierarchies with n
shops. It follows from the existence of limits on firm size that

N(b,W ) � min
{
n ∈ N

∣∣ AΠ(n) ≥ AΠ(n′) ∀n′ ∈ N
}

exist when w > 0. The following proposition states in what sense N(b,W ) is a lower bound
on the size of hierarchies in a forest.

Proposition 6.1 There is an upper bound, which is independent of the total number of
shops and applies to all optimal forests, on the number of shops in hierarchies smaller than
N(b,W ).

Proof. See Appendix B. �

We can derive a lower bound on N(b,W ) with the following observation. It cannot be
possible to raise the profit by combining under a new root several hierarchies that maximize
the per-shop profit.

Proposition 6.2 As either b ↑ 1 or W ↓ 0, N(b,W ) → ∞.

Proof. See Appendix B. �
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We thus obtain the following comparative statistics on limits to firm size: For any
positive wage, there is a limit to firm size, and when the wage-variance ratio is large enough
or the environment changes quickly enough, the limit to firm size is 1. However, as the wage
falls (w ↓ 0) or the environment changes more slowly (b ↑ 1), optimal firm size increases
without bound.

Next we consider comparative statics on the spans for fixed H and endogenous n.

Proposition 6.3 Let H ∈ N. The spans 〈s1, . . . , sH〉 that maximize the per-shop profit are
increasing in W and in b.

Proof. See Appendix B �

That the spans are increasing in b is as expected and is consistent with the conclusion
that, asymptotically as b ↑ 1, firm size is increasing in b. However, it may seem surprising
that the spans, and hence firm size, are increasing in W even though we concluded that,
asymptotically as W ↓ 0, firm size is decreasing in W . This is a consequence of restricting
the height of the hierarchy in Proposition 6.3. Merging hierarchies of height H by “firing”
the root of all but one, which becomes the root of the merged hierarchy with height H,
economizes on managerial costs.

So does dividing a hierarchy of height H by “firing” the root and thereby creating
smaller hierarchies of height H − 1. It is through this process that the hierarchies become
smaller as W increases. Overall, we conjecture that, as W rises, over certain ranges the
height of the optimal hierarchies remains fixed and the spans and size increase. Then, at
certain thresholds, the height falls by 1 and the size falls as well.

7 Technological change

When we drop the normalization that µ = 1, the parameter b is replaced by bµ and the
parameter w becomes wµ.

Suppose that µ falls, meaning that managers become more productive, but the man-
agerial wage stays constant. Then, with regards to our previous comparative statics result,
the effect is like an increase in b and a decrease in w. Both factors lead to larger and more
centralized firms. If the wage increases so that wµ stays constant, then the effect is identical
to an increase in b, and once again the firms become larger and more centralized.

This raises interesting empirical questions. On the one hand, information processing
has become quicker (a decrease in µ). However, as a consequence, each firm finds that its
strategic environment is changing more rapidly (a decrease in b). In our model, these two
trends have opposite effects on organizations.
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A Proofs of results on spans of balanced hierarchies

Proof of Proposition 5.2. Fix H. From equation (2.2),

ΠH(q) = σ2
H∑

h=1

(qh−1 − qh)bLh − w
H−1∑
h=0

qh .

Let h ∈ {1, . . . , H − 1}. Since Lh = αh+ log(q0/qh), ∂Lh/∂qh = −1/qh and

∂bLh

∂qh
= −bLh(log b)/qh .

If η �= h, then ∂Lη/∂qh = 0. Therefore,

∂ΠH

∂qh
= σ2(bLh+1 − bLh)− σ2(qh−1 − qh)q−1

h bLh(log b)− w .

Since Lh+1 = dh+1 + Lh and qh−1/qh = sh,

∂ΠH

∂qh
= −σ2bLh(1− bdh+1)− σ2bLh(sh − 1)(log b)− w .

Dividing the first-order condition ∂ΠH/∂qh = 0 by σ2bLh(log b) and solving for sh yields

sh = 1− 1
log b

+
bdh+1

log b
− W

bLh log b
.

We have changed the first-order conditions from a set of H − 1 equations involving the
variables 〈q1, . . . , qH−1〉 to a set of H − 1 equations involving 〈s1, . . . , sH〉. The additional
variable is fixed by the constraint that s1 · · · sH = q0. �

Proof of Proposition 5.3. The objective function in the maximization problem is Π̄H(q) �
(1/q0)ΠH(q). We show, using a mix of analytic results and numerical tests, that a trans-
formation of the choice variables leads to a strictly concave function.

Specifically, we define the invertible function 〈q0, . . . , qH−1〉 �→
RH

〈r1, . . . , rH〉 by rh =

qh/q0 for h = 1, . . . , H. (In certain formulae involving such a vector r = 〈r1, . . . , rH〉, we
define r0 � 1.) The Jacobian matrix DRH(q) is non-singular for all q since

DRH(q) =




−q1/q20 1/q0 0 · · · 0
−q2/q20 0 1/q0 · · · 0

...
...

...
. . .

...
−qH−1/q

2
0 0 0 · · · 1/q0

−1/q20 0 0 · · · 0



.

We define below a function Π̂H(r) such that Π̄H(q) = Π̂H ◦RH(q). Then let q be a solution
to DΠ̄H(q) = 0. Since DΠ̄H(q) = DΠ̂H(RH(q)) ×DRH(q) and DRH(q) is non-singular,
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DΠ̂H(RH(q)) = 0. We show that Π̄H is strictly concave, which implies that a solution r∗

to DΠ̂H(r) = 0 is the unique global maximizer. Since RH is invertible, q∗ = R−1
H (r∗) is

the unique global maximizer of Π̄H .

We are left with defining Π̂H and showing that it is concave. We can write

Π̄(q0, q1, . . . , qH−1) = σ2
H∑

h=1

(
qh−1

q0
− qh
q0

)
bαh+log q0/qh − w

(
1 +

H−1∑
h=1

qh/q0

)
.(A.1)

Define ĝ(s) � b− log s and a � bα. Then

Π̄(q0, q1, . . . , qH−1) = σ2

H∑
h=1

ah(rh−1 − rh)ĝ(rh)− w − w
H−1∑
h=1

rh =: Π̂H(r1, . . . , rH) .

Π̂H is concave if and only if

GH(r) �
H∑

h=1

ah(rh−1 − rh)ĝ(rh)

is concave.

The proof of Proposition 4.4 in Van Zandt (2002a) shows thatGH is concave in r1, . . . , rH−1.
(The proof uses the restriction that rh−1/rh ≥ 2, which holds here since rh−1/rh = qh−1/qh.)
Although the proof relies partly on a numerical test, its analytic parts imply that

∂2GH

∂r2h
< 0 and

∂2GH

∂r2h

∂2GH

∂r2h′
−

(
∂2GH

∂rh∂rh′

)2

> 0

for h, h′ ∈ {1, . . . , H − 1} such that h �= h′. One can easily check that, although such a
result was not needed in that proof, the derivation also applies when h = H.

These are necessary but not sufficient conditions for the Hessian matrix of GH to be
negative definite. We also tested and confirmed the strict concavity condition

GH

(
λr + (1− λ)r′) > λGH(r) + (1− λ)GH(r′)

in 108 trials, with parameters and variables chosen randomly as follows (in each case, se-
lection is with uniform distribution on indicated range). (i) α ∈ (0, 10), (ii) b ∈ (1/2, 1),
H ∈ {2, . . . , 24}, (vi) λ ∈ (0, 1), (vii) rH , r′H ∈ (0, 1/2H), (viii) for h ∈ {1, . . . , H − 1}, given
rh+1 and r′h+1, rh ∈ (2rh+1, 1/2h) and r′h ∈ (2r′h+1, 1/2

h). These ranges reflect a lower
bound on q0 of 2H and the restriction that spans be at least 2. �

Proof of Proposition 5.4. A hierarchy that maximizes per-shop profit for fixed H but
endogenous q0 must satisfy the first-order conditions (equation (5.3)) for maximizing total
profit for fixed H and q0. The span sH of the root must then also solve the first-order
condition for maximizing per-shop profit when the remaining spans are fixed but q0 is
endogenous.



Van Zandt : Structure and Returns to Scale of Real-Time Hierarchical Resource Allocation 17

Note that

qh
q0

=
sh+1 · · · sH
s1 · · · sH =

1
s1 · · · sh .

Therefore, from equation (A.1), we can write the per-shop profit as

σ2
H∑

h=1

(
1

s1 · · · sh−1
− 1
s1 · · · sh

)
bαh+

∑h
η=1 log sη − w

(
H∑

h=1

1
s1 · · · sh

)
.(A.2)

Then the derivative of equation (A.2) with respect to sH , set equal to 0, yields (substi-
tuting qH = 1 and qH−1 = sH)

σ2(q0sH)−1bLH + σ2

(
sH
q0

− 1
q0

)
bLH (log b)s−1

H + w(q0sH)−1 = 0

1 + (sH − 1) log b+
W

bLH
= 0

1− 1
log b

− W

bLH log b
= sH .

�

Proof of Proposition 5.5. According to Corollary 5.1, if sh < sh+1, then sh−1 < sh
(for h = 2, . . . , H − 1). Therefore, we only have to show (i) that sH−2 < sH−1 and (ii) that
sH−1 < sH if w = 0 or if w > 0 and H maximizes the per-shop profit.

First we show that sH−2 < sH−1. If sH−1 ≤ sH , then sH−2 < sH−1 follows from
Corollary 5.1. Suppose instead that sH−1 > sH . Since sH = 1− (log b)−1,

1 + (log b)−1 < sH−1(A.3)

1 + (sH−1 − 1) log b < 0 .(A.4)

Since LH−2 = LH−1 − dH−1, bLH−2 = bLH−1/bdH−1 . From equation (5.3) for h = H − 2,

sH−2 log b = log b− 1 + bdH−1 − bdH−1W

bLH−1
(A.5)

(sH−2 − 1) log b+ 1− dH−1 = −bdH−1
W

bLH−1
.(A.6)

From equation (5.3) for h = H − 1,

(sH−1 − 1) log b+ 1− bdH =
W

bLH−1
.(A.7)

Substituting equation (A.7) into equation (A.6) and rearranging, we obtain

(sH−2 − 1) log b+ 1− bdH−1 =
(
1 + (sH−1 − 1) log b+ 1− bdH

)
bdH−1 .(A.8)
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Since bdH−1 > bdH bdH−1 , equation (A.8) implies

1 + (sH−2 − 1) log b > (1 + (sH−1 − 1) log b) bdH−1 .(A.9)

Given equation (A.4) and given 0 < bdH−1 < 1,

(1 + (sH−1 − 1) log b) bdH−1 ≥ 1 + (sH−1 − 1) log b .

This and equation (A.9) yields

1 + (sH−2 − 1) log b > 1 + (sH−1 − 1) log b

sH−2 < sH−1 .

That sH > sH−1 if w = 0 is trivial, since then sH = 1 − 1/ log b, and sH−1 = sH +
bdH/ log b < sH .

Finally, we show that sH > sH−1 if w > 0 and H maximizes per-shop profit, i.e.,
for hierarchies that maximize per-shop profit without restrictions. From equations (5.4)
and (5.3), sH > sH−1 if and only if

− W

bLH log b
>

bdH

log b
− W

bLH−1 log b
(A.10)

Multiply equation (A.10) by bLH log b < 0, recalling that bLH/bLH−1 = bdH , to obtain

(bdH − 1)W < bdH bLH .(A.11)

If bdH −1 ≤ 0, then equation (A.11) is satisfied. Otherwise, equation (A.11) can be rewritten

W <
bdH bLH

bdH − 1
.(A.12)

If the hierarchy maximizes per-shop profit without restrictions on the height, then V net
R ≥ 0.

From equation (4.1), this can be written

wsH ≤ σ2(sH − 1)bLH(A.13)

W <
(sH − 1)bLH

sH
(A.14)

Hence, sH > sH−1 if the right-hand side of equation (A.14) is less than or equal to the
right-hand side of equation (A.12), which we verify as follows (assuming still bdH − 1 > 0).

(sH − 1)bLH

sH

?≤ bdH bLH

bdH − 1
,

sHb
dH − bdH − sH + 1

?≤ sHb
dH ,

−bdH ≤ sH − 1 .

�
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B Proofs of results on comparative statics

Proof of Proposition 6.1. Fix b and W . Let n∗ � N(b,W ) and let π∗ � AΠ(n∗) be
the maximum per-shop profit. Let πmax and πmin be the maximum and minimum values,
respectively, of {AΠ(n) | n < n∗}.

Suppose that, in an optimal forest, there are n shops in hierarchies that are smaller
than n∗. The total profit of these hierarchies is at most nπmax. If these shops were instead
organized into hierarchies of size n∗, there would be at most n∗ − 1 leftover shops in a
smaller hierarchy and so the total profit would be at least (n− n∗)π∗ + n∗πmin. This must
be no higher than nπmax since the original forest is optimal. Therefore,

(n− n∗)π∗ + n∗πmin ≤ nπmax

n(π∗ − πmax) ≤ n∗(π∗ − πmin)

n ≤ n∗
π∗ − πmin

π∗ − πmax
.

�

Proof of Proposition 6.2. Fix b and W . Let n � N(b,W ) and H be the size and
height, respectively, of the smallest hierarchy that maximizes the per-shop profit. The
change in profit by combining sR such hierarchies under a new root equals the net value of
the new root:

V net
R = σ2(sR − 1)bα(H+1)+log(sRn) − wsR .

Since the span of each tier is at least 2, H ≤ log2 n. Therefore,

V net
R ≥ σ2(sR − 1)bα(1+log2 n)+log sRn − wsR ,

= σ2(sR − 1)bαn(1+α/ log 2) log bslog b
R − wsR .

Since the profit cannot be increased by combining such hierarchies, V net
R ≤ 0 and hence

n(1+α/ log 2) log b ≤ sR
sR − 1

s− log b
R

W

bα
,(B.1)

n ≥
(

sR
sR − 1

W

bα

) 1
(1+α/ log 2) log b

s
−1

α+1

R .(B.2)

This bound must hold for all sR ≥ 2. Observe first that, since log b < 0, the r.h.s. of
equation (B.2) converges to ∞ as W ↓ 0 for any fixed sR. Consider now the comparative
statics with respect to b. SinceW < 1, we can choose sR such that (sR/(sR−1))W < 1. As
b ↑ 1, (sR/(sR−1))(W/bα) converges to (sR/(sR−1)) and the exponent 1/((1+α/ log 2) log b)
converges to −∞. Therefore, the r.h.s. of equation (B.2) converges to ∞. �
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Proof of Proposition 6.3. The comparative statics with respect to b when w = 0 are
the easiest to see. From equation (5.3), sh is increasing in sh+1 and in b, and hence sh is
increasing in b if sh+1 is increasing in b. The induction is started by noting, from equa-
tion (5.4), that sH is increasing in b.

The general case is almost as easy. Denote 〈s1, . . . , sH〉 by s. We can write equa-
tions (5.3) and (5.4) as sh = fh(s; b,W ) for h = 1, . . . , H. Let f � 〈f1, . . . , fH〉. Each fh
(and hence f) is increasing in s, in b, and in W . Let s0 be the spans given b and W , that
is, s0 = f(s0; b,W ). Let b′ ≥ b and W ′ ≥ W , with at least one strict inequality. Define
{s1, s2, . . .} by st = f(st−1; b′,W ′). Since f is increasing in b and W , s1 > s0. Since f is
increasing in s, st > st−1 for t ≥ 2. The monotone sequence is bounded above by the unique
solution to equations (5.3) and (5.4) when the bdh+1 terms are suppressed (this solution is
recursively defined starting with s1). Therefore, it converges to a solution s′ = f(s′; b′,W ′)
and s′ > s0. �
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