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ABSTRACT
Clustering is a very well studied problem that attempts to
group similar data points. Most traditional clustering algo-
rithms assume that the data is provided without measure-
ment error. Often, however, real world data sets have such
errors and one can obtain estimates of these errors. We
present a clustering method that incorporates information
contained in these error estimates. We present a new dis-
tance function that is based on the distribution of errors in
data. Using a Gaussian model for errors, the distance func-
tion follows a Chi-Square distribution and is easy to com-
pute. This distance function is used in hierarchical cluster-
ing to discover meaningful clusters. The distance function is
scale-invariant so that clustering results are independent of
units of measuring data. In the special case when the error
distribution is the same for each attribute of data points, the
rank order of pair-wise distances is the same for our distance
function and the Euclidean distance function. The cluster-
ing method is applied to the seasonality estimation problem
and experimental results are presented for the retail indus-
try data as well as for simulated data, where it outperforms
classical clustering methods.

Keywords
clustering, distance function, forecasting, Gaussian distribu-
tion, product life cycle, seasonality, time-series.

1. INTRODUCTION
Definition of a good distance or dissimilarity function is a

critical step in any distance based clustering method. Most
of the work in this field assumes that a distance function
defined on pairs of objects is available [3, 4]. Sometimes
these distances are directly measured as pair-wise differences
among objects, but often they are computed from measure-
ments of a number of attributes for each object. Most tra-
ditional clustering methods assume that these distances (or
dissimilarities) can be computed from the data in hand with-
out any error. However, in certain applications such as the
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seasonality estimation problem described below, data repre-
senting each object is not observable. A statistical method
is applied to estimate the data. For example, if one wishes to
cluster various geographical regions based on per household
income and expenditure, one might represent each geograph-
ical region by the average household income and average
expenditure. A sample average by itself is inadequate and
can be misleading unless the variation around the average
is negligible. In some applications (e.g., random sampling)
it is easy to obtain an estimate of the deviation along with
the average. These deviations, which are measures of er-
ror for the averages, may be very different for different data
points. In this paper we present a method of clustering using
information about the errors in data. Although our study
and results are focused on time-series clustering in the retail
industry, the concept can be extended to other clustering
applications where measurement errors are significant.

Numerous approaches to clustering include statistical, ma-
chine learning and optimization perspectives [2, 3, 4]. To the
best of our knowledge, all these approaches assume that each
data point is observed without any error. The fundamental
difference of our approach is that we model measurement
errors.

We assume that we are given n points in the T -dimensional
real space and there is an observation error associated with
each data point. The observation errors may come from dif-
ferent distributions. We assume that we are given a value
and a standard error for each data point. Our goal is to
group these data points into clusters so that it is very likely
that points in the same cluster have the same true value
whereas it is quite unlikely for points in different clusters to
have the same true value (likelihood being defined with re-
spect to the probability distributions of the errors associated
with the data points). In contrast to standard clustering
solutions, in this case, two points that differ significantly
in their observed values might belong to the same clus-
ter if they have high errors associated with them whereas
two points that do not differ much in their observed val-
ues might belong to different clusters if they have small er-
rors. The above argument is illustrated in Figure 1. Four
points A, B, C and D are the observed values of four objects
and these values have Gaussian errors associated with them
as represented by the ellipse surrounding each data point.
Clustering that recognizes errors will put points A and B
into one cluster and points C and D in another, whereas a
clustering method that does not consider errors will cluster
A and C together and B and D together. In this exam-
ple the clustering result from error-based clustering makes



more sense because the x values have large error in their
measurements, whereas, y value measurements are accurate
and should therefore dominate the clustering decision.
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Figure 1: Data points along with errors

Our research was motivated by the problem of estimat-
ing seasonality for retailers based on the sales data from
the previous year. In retail merchandizing it is very im-
portant to understand the seasonal behavior in the sales
of different items to correctly forecast demand and make
appropriate business decisions. We model the seasonality
estimation problem as a time-series clustering problem in
the presence of errors and present the experimental results
when applied to point-of-sale retail data. We were able to
discover meaningful clusters of seasonality whereas classical
methods which do not take account of errors did not ob-
tain good clusters. To the best of our knowledge, this is not
only the first attempt to cluster data while incorporating
information about errors in data, we have not come across
any work that attempts to find seasonal patterns in retail
marketing using time-series clustering.

Although our studies and results can be extended to ar-
bitrary probability distributions, we assume that each point
comes from a multidimensional Gaussian distribution with
diagonal covariance matrix since this distribution is appro-
priate for our application. Under this assumption we present
a new distance function that is based on the distribution of
error in data. Under a Gaussian model for errors, the dis-
tance function follows a Chi-Square distribution and is easy
to compute. The distance function is used in hierarchical
clustering to develop a clustering method that is used in the
seasonality estimation problem.

The rest of the paper is organized as follows. In section
2 we briefly describe the seasonality estimation problem. In
section 3 we provide a time-series representation of season-
ality that models associated errors. In section 4 we define a
distance function based on the distribution of errors in data.
In section 5 we describe a hierarchical clustering algorithm
using this distance function. In section 6 we present ex-
perimental results based on real as well as simulated data.
Finally in section 7 we present concluding remarks along
with future research directions.

2. SEASONALITY ESTIMATION
Seasonality is defined as the normalized underlying de-

mand of a group of similar merchandize as a function of
time of the year after taking into account other factors that
impact sales such as discounts, inventory, promotions and
random effects. Seasonality is a numeric index of seasonal
buying behavior that is consistent from year to year. For ex-
ample, a Christmas item will have high seasonality indices
during the month of December, whereas shorts will have

consistently high seasonality indices during summer and low
indices during winter. There are many different possible
seasonal patterns (see figures 6 & 7). In the retail indus-
try, practical concerns regarding logistic complexity require
that we handle no more than a few (5-15) seasonal patterns.
Therefore, our goal is to identify a small set of seasonal pat-
terns that model the items sold by the retailer and relate
each item to one of these seasonal patterns.

Considerable work has been done on how to account for
the effect of price, promotions inventory and random ef-
fects[6, 8]. In our retail application, weekly sales of an item
i are modelled as products of several factors that affect sales
as described in equation (1).

Saleit = fI(Iit)∗fP (Pit)∗fQ(Qit)∗fR(Rit)∗PLCi(t−ti
0)∗Seasit

(1)
Here, Iit, Pit, Qit and Rit are the quantitative measures of
inventory, price, promotion and random effect respectively
for an item i during week t. fI , fP , fQ and fR model the
impact of inventory, price, promotion and random effect on
sales respectively. PLC is the Product Life Cycle coefficient
which is defined as the sale of an item in the absence of
seasonality as well as the factors discussed above. The shape
and duration of the PLC curve depends on the nature of
the item. For example, a fashion item will sell out very fast
compared to a non-fashion item as shown in the figure 2.
Saleit, Seasit and PLCi(t−ti

0) are the sale value, seasonality
coefficient and PLC coefficient of item i during week t where
ti
0 is the week when the item is introduced. For convenience

we define the PLC value to be zero during weeks before
the item is introduced and after it is removed. Seasonality
coefficients are relative. To compare seasonality coefficients
of different items on the same scale, we assume that sum of
all seasonality coefficients for an item over a year is constant,
say equal to the total number of weeks, which is 52 in this
case.

PLC of a non-fashion item PLC of a fashion item

Figure 2: PLCs for non-fashion and fashion items

In this paper we will assume that our data has been pre-
processed by using (1) to remove the effects of all these non-
seasonal factors. We also assume that the data has been
normalized to enable comparison of sales of different items
on the same scale. After pre-processing and normalization
the sale of an item, Saleit is determined by the PLC and
seasonality as described below.

Saleit = PLCi(t− ti
0) ∗ Seasit. (2)

Since adjusted sales of an item is the product of PLC and
seasonality, it is not possible to determine seasonality just
by looking at the sale values of an item. The fact that items
having the same seasonality pattern might have different
PLCs complicates the analysis.

Initially, based on domain knowledge from merchants we
group items that are believed to follow similar seasonality



over the entire year. For example, one could group together
a specific set of items that are known to be selling during
Christmas, all items that are known to be selling during
summer and not during winter, etc. The idea is to get
a set of items following similar seasonality that are intro-
duced and removed at different points of time during the
year. This set, say S, consists of items having a variety of
PLCs differing in their shape and time duration. If we take
the weekly average of all PLCs in S then we would have a
somewhat flat curve as shown in figure 3. This implies that
weekly average of PLCs for all items in S can be assumed
to be constant as shown in theorem 1.

PLCs of a set of items
introduced and removed at different times

Weekly average of all these PLCs

Figure 3: Averaging effect on a set of uniformly dis-
tributed PLCs

Theorem 1. For a large number of PLCs that have their
introduction dates uniformly spread over different weeks of
year, the weekly average of PLCs is approximately constant,
i.e.,

1

|S|
X
i∈S

PLCi(t− ti
0) ≈ c ∀t = 1, ..., 52 (3)

Proof. Let us consider a given week, say week t. Since
only those PLCs that have starting time between week t−51
and week t will contribute to the weekly average for week t,
we consider only those PLCs that have ti

0 between week t−51
and week t. Let pl be the probability of ti

0 = l. Because of
equally likely starting times, pl = 1

52
for l = t−51, t−50, ..., t.

E(
1

|S|
X
i∈S

PLCi(t− ti
0)) =

1

|S|
X
i∈S

E(PLCi(t− ti
0))

=
1

|S|
X
i∈S

tX
l=t−51

pl∗PLCi(t−l) =
1

52 ∗ |S|
X
i∈S

51X
l=0

PLCi(l) = c

(4)
where c is a constant that does not depend on t. The vari-
ance of 1

|S|
P

i∈S PLCi(t−ti
0) is inversely proportional to |S|

as in equation (8). If |S| is large, the variance will be small
and the weekly observed values of 1

|S|
P

i∈S PLCi(t−ti
0) will

be approximately constant and hence the result.

If we take the average of weekly sales of all items in S
then it would nullify the effect of PLCs as suggested by the
following equations. Let Salet be the average sale during
week t for items in S then

Salet =
1

|S|
X
i∈S

Saleit =
1

|S|
X
i∈S

Seasit ∗PLCi(t− ti
0). (5)

Since all items in S are assumed to have the same season-
ality, Seasit is the same for all items i ∈ S, say equal to
Seast, i.e.,

Seasit = Seast ∀i ∈ S, t = 1, 2, .., 52. (6)

Therefore,

Salet = Seast∗ 1

|S|
X
i∈S

PLCi(t−ti
0) ≈ Seast∗c t = 1, ..., 52.

(7)
The last equality follows from theorem 1. Thus seasonality
values, Seast, can be estimated by appropriate scaling of
weekly sales average, Salet.

The average values obtained above will have errors associ-
ated with them. An estimate of the standard error in Salet

is given by the following equation.

σt =

s
1

|S|
X
i∈S

(Saleit − Salet)2 (8)

The above procedure provides us with a large number of
seasonal patterns, one for each set S, along with estimates
of associated errors. The goal is to form clusters of these
seasonal patterns based on their average values and errors.
Each cluster of seasonal patterns is finally used to estimate
seasonality of the cluster. This estimate will have smaller
error than if we estimated seasonality for each pattern in S.

One might attempt to estimate seasonality using stan-
dard time-series clustering, but the danger of not incorpo-
rating knowledge of errors in the clustering method is that
the information on variability of the data points is ignored.
Knowledge of errors would lead us to be more careful in as-
signing a low error data point to a cluster than a high error
data point. Errors and associated probability distributions
capture the variability of a data point and, in the rest of the
paper, we will present how explicit treatment of errors can
be used to discover better clusters.

3. REPRESENTATION OF TIME-SERIES
Time-series data differs from other data representations

in that a data point in time-series is represented by a se-
quence typically measured at equal time intervals. Various
time-series representations have been proposed in [1, 5] for
data with no errors. In this section we present a time series
representation that models errors associated with data.

In our model a time-series sampled at T points is repre-
sented by a sequence of T distributions. We assume that
each of these T samples are independent of each other and
are distributed according to one-dimensional Gaussian dis-
tributions. A time-series is represented as A = {(x1, σ1),
(x2, σ2), ..., (xT , σT )} where the tth sample of A is normally
distributed with mean xt and standard deviation σt.

We assume that all the T samples of a time-series are
normalized, i.e.,

P
t xt = T . For seasonality estimation we

have T equal to 52 corresponding to the number of weeks in
a year. xt is the normalized value of seasonality estimate,
Salet, obtained in equation (7). σt is the standard error in
the estimated value of xt as in equation (8).

4. DISTANCE FUNCTION
Like most clustering methods we assume that the rela-

tionships among a set of n objects is described by an n× n
matrix containing a measure of dissimilarity between the ith

and the jth data points. In clustering parlance it is referred
to as the distance function between a pair of points. Vari-
ous distance functions have been considered for the setting
where data has no measurement errors [3, 4]. In this section



we develop a probability based distance function for data
with errors.

4.1 Distance Function Definition
Consider two seasonalities Ai = {(xi1, σi1), (xi2, σi2), ...,

(xiT , σiT )} and Aj = {(xj1, σj1), (xj2, σj2), ..., (xjT , σjT )}.
Ai and Aj are the estimated values of two seasonalities as
described in section 2. Let the corresponding true seasonali-
ties be {µi1, µi2, ..., µiT } and {µj1, µj2, ..., µjT }. This means
that x’s are the observed values that come from distributions
with true means of µ’s. We define similarity between two
seasonalities as follows. If the null hypothesis H0 : Ai ∼ Aj

is true then similarity between Ai and Aj is the probabil-
ity of accepting the hypothesis. Here, Ai ∼ Aj denotes
µit = µjt for t = 1, ..., T . The distance dij between Ai and
Aj is defined as (1-similarity), which is the probability of
rejecting the above hypothesis. This distance function sat-
isfies the following desirable properties.
dist(A, B) = dist(B, A)
dist(A, B) ≥ 0
dist(A, A) = 0
dist(A, B) = 0 ⇔ A = B
dist(A, B) ≤ 1.

Let N(µ, σ) denote a Gaussian distribution with mean µ
and standard deviation σ. Consider tth samples of both
seasonalities, Ait = (xit, σit) and Ajl = (xjl, σjl). We as-
sumed that Ait and Ajt come from independent Gaussian
distributions with means µit and µjt and standard devi-
ations σit and σjt respectively. This implies that xit ∼
N(µit, σit) and xjt ∼ N(µjt, σjt) so that (xit − xjt) ∼
N(µit − µjt,

q
σ2

it + σ2
jt).

If Ai ∼ Aj then µit = µjt and consequently the statistic
xit−xjtq
σ2

it+σ2
jt

follows a t-distribution, but if a large amount of

data is used in the estimation of xit and xjt then it can be
approximated by the standard Gaussian distribution N(0, 1)

[7]. Therefore,
(xit−xjt)

2

σ2
it+σ2

jt
will follow the Chi-Square distri-

bution with one degree of freedom. Since the T samples

are assumed to be independent the statistic
PT

t=1

(xit−xjt)
2

σ2
it+σ2

jt

follows the Chi-Square distribution with T − 1 degrees of
freedom (1 degree less because of the constraint:

PT
t=1 xit =PT

t=1 xjt). Therefore, 1−χ2
T−1(

(xit−xjt)
2

σ2
it+σ2

jt
) is the probability

of accepting two seasonalities as the same in spite of having
the observed differences. Consequently,

dij = χ2
T−1(

(xit − xjt)
2

σ2
it + σ2

jt

). (9)

4.2 Comparison with Euclidean Distance
Since χ2

f (x) is a monotonically increasing function w.r.t. x
for any degrees of freedom f , dij is monotonically increasing

with respect to
PT

t=1

(xit−xjt)
2

σ2
it+σ2

jt
. Therefore, among all pair-

wise distances between the given time-series sequences, the

rank order of dij is the same as that of
(xit−xjt)

2

σ2
it+σ2

jt
. If all σ’s

were the same and equal to σ then it would become the rank
order of 1

2σ2

PT
t=1(xit − xjt)

2 which is the same as the rank

order of the Euclidean distance,
PT

t=1(xit − xjt)
2. There-

fore, when all the errors are equal, the proposed distance
function has the same rank order as the Euclidean distance.

Popular distance-based hierarchical clustering methods use
single linkage and complete linkage. For these methods it
is the rank order of distances that matters and not the ac-
tual distances. Therefore, a clustering method based on the
proposed distance function will be identical to a clustering

method based on
PT

t=1

(xit−xjt)
2

σ2
it+σ2

jt
which is a weighted Eu-

clidean distance function where each sample is weighted with
the inverse of its pooled error. This makes intuitive sense
because it gives smaller weight to the data that have higher
error and large weight to samples that have small error.

4.3 Scale Invariant Clustering
Many distance functions used in clustering change non-

linearly with change in scale of measuring data and subse-
quently the clustering results might also change [3]. The
distance function we have proposed is independent of scale.
When we change units of measurement of data, the observed
x values and corresponding errors σ’s are multiplied by the

same factor. Therefore,
PT

t=1

(xit−xjt)
2

σ2
it+σ2

jt
is unit-free and so

dij is scale invariant.

5. CLUSTERING

5.1 Clustering Algorithm
Definition of a good distance function is the most critical

step in any distance based clustering method. Having de-
cided on a distance function we use a hierarchical clustering
method that is similar to Ward’s method [9]. In this method,
we start with each data point being a singleton cluster and
at each stage combine the closest pair of clusters into a sin-
gle cluster until a threshold value is reached or a predefined
number of clusters is obtained. At each intermediate stage
two clusters are combined into a single cluster using a merge
operation defined in section 5.2. The clustering algorithm is
formally described below.

Algorithm hError(A, G)
Input: Ai = {(xi1, σi1), (xi2, σi2), ..., (xiT , σiT )}, i = 1, 2, ...n

G = number of clusters.
Output: Cluster(i), i = 1, 2, ..., G.
Start

for i = 1 to n
Cluster(i) = {i}
seas(i) = Ai

end
NumClust = n
while NumClust > G

for 1 ≤ i < j ≤ NumClust
calculate dij = dist(seas(i), seas(j)) using

equation (9)
end
(I, J) = arg min1≤i<j≤NumClust dij

Cluster(I) = Cluster(I) ∪ Cluster(J)
seas(I) = merge(seas(I), seas(J)) using

equations (10) and (11)
Cluster(J) = Cluster(NumClust)
seas(J) = seas(NumClust)
NumClust = NumClust− 1

end
return Cluster(i), i = 1, 2, ..., G

end



5.2 Merging time-series
The merge operation is used in the Algorithm hError to

combine information from a pair of time-series to produce a
new time-series that is an interpolation between the time-
series used to produce it. The shape of the resulting time-
series depends not only on the sample values of individual
time-series but also on errors associated with them.

Consider two time-series, A = {(x11, σ11), (x12, σ12), ...,
(x1T , σ1T )} and B = {(x21, σ21), (x22, σ22), ..., (x2T , σ2T )}.
Let C = {(x1, σ1), (x2, σ2), ..., (xT , σT )} be the resulting
time-series when A and B are merged. Let A and B come
from the same true seasonality with means {µ1, µ2, ..., µT }.
A natural choice for the components of C are the maximum
likelihood estimates of µ’s and associated standard devia-
tions. From the maximum likelihood principle [7] and the
Gaussian distribution assumption, it is easy to show that

xt =
1

1
σ2
1t

+ 1
σ2
2t

(
x1t

σ2
1t

+
x2t

σ2
2t

) t = 1, 2, ..., T. (10)

σt =
1q

1
σ2
1t

+ 1
σ2
2t

t = 1, 2, ..., T. (11)

6. EXPERIMENTAL RESULTS
In this section we present experimental results using Al-

gorithm hError on simulated data and also on data from a
leading national retail chain.

6.1 Simulated Data
We generated artificial data using ten PLCs that differ in

their peaks and shapes as shown in figure 4. The PLC data
is randomly generated by choosing one of these ten PLCs
with equal probability and a uniformly distributed starting
time over a period of one year. Using three different sea-
sonalities corresponding to Christmas, summer seasonality
and winter seasonality (see figures 6 & 7 ), we generated
sales data by multiplying each generated PLC with one of
the three seasonalities. We constructed 12 instances, where
each instance consists of 25-35 PLCs. Sales data for each
instance was generated by multiplying all the PLCs in that
instance with one of the above seasonalities chosen at ran-
dom. We hide the information about true seasonalities and
use Algorithm hError to recover three seasonalities.

We obtain an estimate of seasonality and associated errors
for each instance by averaging weekly sales data in that in-
stance as described in section 2. The estimated seasonalities
and associated errors are shown in figure 5 with vertical bars
representing standard errors. It can be seen from the figure
that some of the seasonalities do not correspond to any of
the original seasonalities, for example, the middle one in
the last row. Moreover, each of them has large errors. We
ran hError and obtained the three cluster centers shown in
figure 6. The resulting seasonalities match original season-
alities very well as can be seen from this figure. We com-
pared our result against k-means and Ward’s method that
do not consider the information about errors. The number
of misclassifications were higher when we used these cluster-
ing methods. The clusters were identical for both of them
and the cluster centers are shown in figure 7.

We assess the quality of a clustering result by computing
its Average Estimation Error. Let there be r true seasonali-
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Figure 4: Ten different PLCs.
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Figure 5: Individual (prior to clustering) seasonality
estimates with associated errors.

ties, Seas1, Seas2, ..., Seasr. r is 3 in the above experiment.
Let the estimated seasonalities be Estimate1, Estimate2,
..., Estimater then the Average Estimation Error is defined
as

AverageEstimationError =
1

r

rX
i=1

|Seasi − Estimatei|

(12)
where |Seasi − Estimatei| is the total absolute difference
between the true seasonality indices and the estimated sea-
sonality indices defined as below.

|Seasi − Estimatei| =
52X

t=1

|Seasit − Estimateit| (13)

In the above experiment the Average Estimation Error
was 4.9758 using kmeans or Ward’s method, whereas it was
only 1.7780 using hError.

We replicated the above experiment 100 times. Table 1
shows the average number of misclassifications and Average
Estimation Error made by different clustering methods on
a set of 12 seasonalities when clustered into 3 groups.

6.2 Retailer Data
In order to investigate the usefulness of our technique in

practice, we carried out comparative analysis on real data
from a major retail chain. Retail merchandize is divided
into several departments (examples: shoes, shirts, jewelry.)
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Figure 7: Seasonalities obtained by kmeans and
Ward’s method using Euclidean distances.

which are further classified into several classes (example:
men’s winter shoes, formal shirts, etc.). Each class has a
varying number of items for which sales data is available.
For this experiment we considered only those classes that
have sales data for at least 20 items. The data used con-
sisted of two years of sales data. One year of data was
used to estimate seasonalities. Using these estimated sea-
sonalities, we forecast sales for the next year and compare
it against the actual sales data. We considered 6 different
departments (greeting cards, books, music and video, toys,
automotive, and sporting goods). Each department has 4-15
classes and we used data from a total of 45 classes across all
6 departments. First we estimated seasonalities and asso-
ciated errors for each class based on the method described
in section 2. Having estimated seasonalities, we applied Al-
gorithm hError to reconstruct seasonalities for each class.
Using these seasonality estimates, we predicted sales for the
items in the books department. We chose the books de-
partment because the effects such as price, promotions and
inventory were small for this department, thereby, weekly
change in sales for the books department was mainly be-
cause of seasonality. We assessed the quality of forecast by
calculating average Forecast Error, which is the ratio of the

Table 1: Average # misclassifications and Average
Estimation Error for different clustering methods.
Clustering Method Average # mis-

classifications
Average Esti-
mation Error

hError 0.87 2.0182
Ward’s method 2.63 4.7021
kmeans 2.94 5.0337

total difference between actual sale and forecast sale to the
total actual sale, as defined below.

ForecastError =PT
t=1 |ActualSalet − ForecastSalet|PT

t=1 ActualSalet

(14)

We compared our result against kmeans and Ward’s method
based on the Euclidean distance. We also compared our
forecast when no clustering was used, i.e., when the forecast
was based on the seasonality estimates for each class using
average of weekly sales data as described in section 2. We
found that forecasts using hError were substantially better
than forecasts using kmeans or Ward’s method or forecasts
without using clustering. Table 2 compares average Forecast
Error in these four situations for 17 different items in the
books department.

Table 2: Average Forecast Error
Clustering Method Average Forecast Error %
hError 18.7
Ward’s 23.9
kmeans 24.2
No clustering 31.5
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Figure 8: Sales forecast against actual sales
——— : actual sales
—+— : forecast using hError
—o—- : forecast using Ward’s method
—4— : forecast without clustering

Figure 8 shows graphs comparing these forecasts for one
item in the books department. This item was sold for a
total of 33 weeks during January through September 1997.



The price for the item was constant during this period and
there was no promotion on this item, therefore we ignored
all external factors and made our forecast using only PLC
and seasonality coefficients. Seasonality of the class that
contains this item is estimated using past year’s sales data
of all the items in the class. The first 18 weeks of sales data
of this item is used to estimate the PLC. PLC is estimated by
simple curve fitting from a set of predefined PLCs. Using
the seasonality estimates from past year’s data and PLC
estimate from the first 18 weeks of data, we forecast sales
for the remaining 15 weeks. The graphs show that forecasts
using hError are significantly better than the others.

In figure 8 we observe that seasonality estimates without
clustering failed to capture the sales pattern. Clustering
using Euclidean distance succeeded in making a better fore-
cast but clustering using error-based distance function was
even better. The reason is that the books department has
5 classes. Because very few items are used to estimate sea-
sonality for each class, each seasonality estimate has large
errors and therefore the forecast based on this seasonality
estimate (without clustering) does not match actual sales.
On close inspection of the data we found that there are two
groups of 3 and 2 classes having similar seasonalities. Clus-
tering identifies the right clusters of 3 and 2 seasonalities.
The combined seasonality of each cluster has higher accu-
racy because more items are used to estimate it. Cluster-
ing using the error-based distance function does better than
Euclidean distance based clustering because it gives more
weight to seasonality with smaller errors obtained by using
larger number of items.

We restricted our forecast analysis to only a small section
of books items that had small fluctuation in price over their
selling period. This helped us eliminate effects due errors in
estimation of the factors relating to price or promotion.

7. DISCUSSION AND FUTURE RESEARCH
In this paper we have developed a clustering method that

incorporates information about errors associated with data.
Traditional clustering methods are inadequate when differ-
ent data points have very different errors. We introduced a
new distance function which is based on Gaussian distribu-
tion of errors. We showed that this distance function can
be viewed as a generalization of the classical Euclidean dis-
tance. The distance function also has the property that it is
invariant under different scales for data. Finally, we demon-
strated the utility of our method, on both simulated and
real data sets, in improving estimates of seasonality in the
retail industry.

Although we developed the distance function for time-
series clustering, the concept of incorporating information
about error in the distance function is very general and can
be used in many other clustering applications. In our re-
search we made a basic assumption that the T samples of
a time-series come from independent distributions. In time-
series data, it is common to encounter positive correlations
in consecutive sample values. Less often we also encounter
negative correlations. Therefore, while incorporating the
concept of dependence can be difficult, it can improve the
test statistic developed in section 4 and subsequently give
more accurate measure of the distance function. We have
generalized our approach to accomodate correlated obser-
vations. We have a working paper under development with
this theme. In the case of seasonality estimation problem we

deal with seasonality values that are obtained by taking av-
erage of sales data of a group of items. Dependency among
samples of a time-series might not be a serious problem for
seasonality estimation because the averaging process might
dampen the effect of dependency.

In this paper we have provided a hierarchical clustering
heuristic that recognizes errors associated with data. The
next step would be to formulate a model for the problem and
let the model provide a basis for a natural heuristic to solve
the problem. We have already developed a model that jus-
tifies the work presented here and extended it to correlated
data. We are in the process of developing and comparing
several heuristics that arise from our model. We are also
exploring other applications of error-based clustering. We
have already identified that the method works very well in
clustering of regression coefficients. We expect to be able to
report this work in progress soon.

Errors are natural in any data measurement. Often er-
rors contain very useful information and should be consid-
ered an important part of data. We feel that a clustering
method using the information contained in errors is an im-
portant conceptual step in the field of cluster analysis and
data mining.
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