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INTRODUCTION


The very idea of deliberately designing to help workers adapt to novelty and change in complex work domains seems paradoxical.  On the one hand, there is a growing recognition that the need to support worker adaptation is increasing (Hirschhorn, 1984; Rasmussen, Pejtersen, & Goodstein, 1994; Nickerson, 1995; Norros, 1996; Vicente, 1999).  More than ever, the pace of change in society is such that the job demands experienced by workers are evolving rapidly in unpredictable ways.  Blum (1996, p. 160) summarized the implication succinctly: “Change is the invariant, not knowledge”.  One the other hand, it can seem impossible to design information support for events that are unknown and unforeseeable at the time of design (Shepherd, 1993; Mitchell, 1996).  If we cannot predict future demands, then how can we possibly design to support them?  From this perspective, the idea of designing for worker adaptation to novelty and change seems unattainable -- by definition.


Ecological interface design (EID) is a theoretical framework for human-computer interface design that aims to support worker adaptation to novelty and change (Vicente & Rasmussen, 1990, 1992).  EID relies on Rasmussen’s (1985) abstraction hierarchy (AH) to identify the information requirements for interface design.  The physical and functional information identified by an AH model is then displayed in a form that allows experienced workers to rely on their powerful perception-action capabilities, rather than their more resource-limited analytical capabilities, to control the work domain.  


The growing body of empirical literature on EID (see Vicente, in press for a review) has emphasized representativeness over experimental control.  This choice has enhanced the generalizability of results to operational settings.  However, that contribution to applied research has been obtained at a cost to basic research -- the ability to develop defensible causal explanations for the observed effects is limited.  To redress this imbalance, complementary research emphasizing experimental control should be conducted to foster fundamental theory building (Vicente, 2000).  This article addresses that objective.

Background


The literature on EID suffers from several limitations when it comes to evaluating rigorously the framework’s comparative ability to support adaptation to novelty and change.  First, many studies that have investigated this issue have injected faults into dynamic scenarios with interactive simulations (e.g., Pawlak & Vicente, 1996; Christoffersen, Hunter, & Vicente, 1997; Reising & Sanderson, 2000; Ham & Yoon, 2001).  These scenarios benefit from being representative of the types of novel events encountered by workers in operational settings.  However, in an interactive simulation, the demands imposed by a fault depend very strongly on the state of the simulation and on the task that the participant is pursuing when a fault occurs.  And since participants may have the simulation in a different state or even a different configuration when a fault occurs, “the very same fault can be very difficult for one participant, relatively easy for another, and not even experienced by a third (e.g., if they are not using the component that failed)” (Christoffersen et al., 1997, p. 19).  As a result, the use of fault scenarios, while representative, can result in less experimental control.


Second, the studies cited above have compared an EID interface with a baseline interface for novel scenarios and have consistently obtained a main effect in favour of EID.  This result is important from a practical perspective because it demonstrates that EID can lead to better performance with unanticipated scenarios than design approaches currently being used in industry.  Note, however, that this finding does not allow one to conclude that EID provides greater support for adaptation to novelty and change.  That inference can only be based on an interaction, not a main effect.  One would have to compare the change in performance between familiar and novel conditions for each interface type, and demonstrate that the introduction of novel scenarios has a significantly smaller impact on the EID interface than the baseline.  Moreover, the scenarios in the familiar and novel conditions should be identical in all other ways (e.g., the values of the goal variables).  As far as we know, a comparison satisfying these conditions has yet to be conducted.


Third, and relatedly, to evaluate an interaction between interface type and scenario novelty, a common metric must be used.  However, since most studies have used fault scenarios as stimuli (see above), the usual metric for evaluating performance under novel conditions is fault diagnosis accuracy.  This measure may be difficult to apply to familiar (i.e., non-fault) scenarios.  


Finally, most research on EID has investigated the applied goal of evaluating performance compared to traditional design approaches (Vicente, in press).  Less attention has been devoted to investigating rigorously why EID leads to performance improvements.  Two issues, in particular, are outstanding.  First, there is a suggestion that the benefits of EID are obtained because EID leads to higher-level control, whereas traditional designs lead to lower-level control (Yu et al., in press).  Higher-level control focuses on higher-level functions in the AH by using any feasible lower-level components in a context-specific way.  In this case, the higher-level functions and outcome (i.e., product) are consistent across situations, whereas the lower-level actions vary from one situation to the next.  This phenomenon is known as context-conditioned variability in the motor control literature (Turvey et al., 1982).  In contrast, lower-level control focuses on a specific way of using components at the bottom of the AH in a context-independent way, much like a rote recipe.  In this case, the lower-level actions (i.e., process) are consistent across situations.  The hypothesis that EID leads to better adaptation to novelty and change because of a greater reliance on higher-level control has yet to be tested rigorously.  


Second, there is also a suggestion that the benefits of EID and the reliance on higher-level control is made possible because experienced participants are able to access the functional information in the AH by become perceptually coupled to the emergent features graphics (Buttigieg & Sanderson, 1991) that are typically found in interfaces based on EID (Vicente & Rasmussen, 1990, 1992).  The familiar polar star octagon display can be an example of an emergent feature display.   It presents physical and functional information in the same graphic.  The physical information can be accessed by looking at the low-level spokes that make up the octagon, whereas the functional information can be accessed by looking at the emergent feature of symmetry that is created by configuring the individual spokes into an octagon.  Thus, in an EID display, participants may become perceptually coupled to the emergent feature and thereby pickup the functional information that is said to be important for adaptation to change and novelty.  In contrast, in the absence of emergent feature graphics, participants would have to derive that functional information using resource-intensive analytical processes.  The hypothesis that EID leads to better adaptation to novelty and change because of perceptual coupling to emergent feature graphics has also yet to be tested rigorously.


The research in this article addresses all of these limitations.  Performance on novel and familiar events was compared rigorously using an interface based on EID and an interface based on traditional design practices.  The novel events, referred to as perturbations, were experienced in the same way by all participants, thereby avoiding the problems associated with fault trials in interactive simulations.  The interaction between scenario type and interface type was investigated using common metrics so that inferences could be made about the degree of adaptation to novelty and change.  Also, the hypotheses that higher-level control and emergent feature graphics might be responsible for the advantages of EID were investigated directly in a controlled fashion.  
EXPERIMENTAL TESTBED


Two experiments were conducted in the context of a representative microworld simulation of a thermal-hydraulic process shown in Figure 1.  The process consists of two redundant feedwater streams (FWSs) that can be configured to supply water to either of the two reservoirs.  Each reservoir has associated with it an externally determined demand for water that can change over time.  The simulation purposes are twofold: to keep each of the reservoirs at a prescribed temperature (40˚ C and 20˚ C), and to satisfy the current mass (water) output demand rates.  To satisfy these purposes, participants have control over eight valves (VA, VA1, VA2, VO1, VB, VB1, VB2, and VO2), two pumps (PA, PB), and two heaters (HTR1, HTR2).  Normally, the time constants for the heaters and the remaining components are 15 s and 5 s, respectively.

====================

Insert Figures 1 & 2 about here

====================


Two interfaces were constructed for this microworld (Vicente & Rasmussen, 1990; Pawlak & Vicente, 1996). The P interface in Figure 1 presents only a subset of the information identified by an AH analysis, focusing on physical information.  The form of the interface uses a mimic, or piping and instrumentation, diagram format that is the industry standard in process control.  The P+F interface in Figure 2 presents all of the information identified by an AH analysis, thereby including both physical and functional information.  The physical information is presented using a mimic diagram format, whereas the functional information takes advantage of emergent feature graphics on the right side of Figure 2.


According to EID, the P+F interface should be more likely to lead to successful adaptation to novelty and change.  Because the emergent feature graphics reveal the functional levels of information in the AH, it should be easier for participants to exhibit higher-level control by relying on perceptual coupling.  In contrast, with the P interface, those functional levels of information are not visible in the interface, so participants would have to engage in analytical reasoning to exhibit higher-level control.  If such cognitive demands exceed the P participants’ limited resources, then those participants would tend to exhibit lower-level control, and thus, less success in adapting to novelty and change.
EXPERIMENT 1

The purpose of the first experiment was to investigate the impact of dynamic perturbations on success in adaptation and on level of control, using the P and P+F interfaces with experienced participants.  EID predicts that participants with the P+F interface should be better able to adapt to the perturbations than the P.  Also, EID predicts that those participants who are able to adapt successfully with the P+F interface would exhibit signs of higher-level control.  In contrast, the P participants who are not able to adapt successfully should exhibit signs of lower-level control.  

Method


Experimental design.  A repeated measures, mixed design was adopted with interface (P or P+F) as a between-participants variable, and trial type (normal and perturbation) as a within-participants variable.  The study consisted of 80 trials divided into 4 matched blocks of 20 trials.  The first three blocks were the same (with one exception noted below), and provided an opportunity for participants to learn how to control the microworld under normal conditions.  During the last block, the time constants of all of the components were uniformly but randomly changed from trial to trial by multiplying their normal values by specific factors (0.1, 1, 2.5, 5, 7.5, 10x).  The 0.1x multiplier corresponded to more responsive component dynamics, whereas the 10x multiplier corresponded to less responsive component dynamics.  Two perturbation trials were also included in the first block (7.5x in trial 2; 0.1x in trial 4).


Participants.  There were 8 paid participants in each interface group.  All of them were university engineering students who were primarily selected based on their willingness to participate, their degree of relevant formal training (i.e., 1-3 courses in fluid mechanics and thermodynamics), and their cognitive style (see below).  


Apparatus.  The interactive, dynamic simulation was programmed on an SGI computer with an IRIX operating system.  Information was presented on a 19 inch, high-resolution, color graphics monitor.  Control actions were input using a computer mouse.  Each time an input was made, the state of all of the simulation variables was automatically logged for data analysis.

Task.  For each trial, participants were required to start-up the process and achieve steady state by satisfying the 4 target conditions simultaneously (i.e., two outflow demand and two temperature goals) for 5 consecutive minutes within a 30-minute time limit.  


Procedure. In the introductory session, participants read an explanation of the purposes of the experiment, and filled out a consent form and an initial questionnaire.  They then completed the Spy Ring History test (Pask & Scott, 1972) so that their cognitive style could be assessed.  The results of this test were used to assign participants to the two interface groups so as to control for cognitive style (see Torenvliet, Jamieson, & Vicente, 2000).

Participants were then given a tutorial on the components of the microworld (independent of the interface).  After completing the tutorial, each participant was given a brief exercise.  Next, the specific interface (P or P+F) assigned to each participant was introduced; the discussion only centered on the elements of the display, not the functioning of the simulation. 


In each subsequent session, participants performed several trials requiring them to control the simulation.  Each session lasted approximately one hour per day.  Each participant operated the simulation for approximately 25 hours in total, resulting in approximately 400 participant hours of data collection.  Before their first trial, and immediately after both the 60th and 80th trials, participants were asked to write out a control recipe (see below).  At the end of the experiment, each participant was debriefed individually. 


Dependent variables.  The primary measure of adaptation success was task completion time.  Adaptation and stability of control were also assessed using four goal variable measures.  Rise time was defined as the elapsed time from the start of a trial until the process first reached the target area where all 4 goal variables were in their respective setpoint regions.  The goal variables sometimes went beyond, and oscillated around, the target regions before reaching steady state.  Oscillation time was defined as the time to stabilize the goal variables after they had reached the target regions but before steady state was achieved.  During this period, the normalized maximum deviation was calculated as the maximum value the goal variables exceeded the target regions, divided by the target region value.  The number of oscillations was calculated as the number of times the goal variables crossed above and below the target regions during this period.  Steady state time was defined as the period when all goal variables were in the target regions for 5 consecutive minutes.  To be conservative, only the maximum value within each trial for the set of 4 goal variables was used in the analysis for each measure.

Level of control in the AH was assessed quantitatively by using a set of novel multidimensional measures of variance (Yu, Lau, Vicente, & Carter, in press).  Each level of the AH (i.e., Functional Purpose, Abstract Function, Generalized Function, and Physical Function) is a different representation of the same work domain, so each level provides a different state space of variables for describing the quantitative behavior of the participant-environment system (i.e., goal variables, mass and energy variables, flow rate and heat transfer rate variables, and component settings, respectively).  The quantitative behavior during each trial can be plotted as a trajectory over time.  For example, the state of the goal variables over time for one trial constitutes one trajectory.  But because each level of the AH defines a different state space, the same trial will be revealed as a different trajectory at each level of the AH.  For each block of trials for one participant, we obtain a series of trajectories in the same state space, one for each trial.  It is then possible to calculate the multi-dimensional variance of these trajectories.  This variance is a quantitative measure of consistency (or conversely, variability) at a particular level of the AH.  For example, if the path that the goal variables take is exactly the same for each trial, then the variance would be zero.  However, if the path that the goal variables take is wildly different from trial to trial, then the variance would be quite large.  Because each level of the AH represents a different state space for the same work domain, the same block of trials will be represented as a different set of trajectories at each level of the AH.  Thus, it is possible for the same participant to exhibit high variance at one level and low variance at another.  Such a pattern of results allows us to make inferences about level of control.  Low variance at a functional level of the AH would be evidence of higher-level control, whereas low variance at a physical level of the AH would be evidence of lower-level control.


A knowledge elicitation measure, a control recipe (Irmer & Reason, 1991), was also administered.  Participants were asked to write down a set of instructions describing how they controlled the process.  These instructions were to be sufficiently detailed to allow someone who had never seen the process before to control it in the same manner as the participant.


Data analysis.  Data were analyzed using several statistical software packages (Matlab, Microsoft Excel, and SAS).  Wherever meaningful, statistical significance was assessed using 95% confidence intervals.  Non-overlapping confident intervals represent significant differences.

Results


Trial completion times.  Trial completion times provide a measure of success in adapting to change.  Figure 3a shows the results for normal trials in block 3 and perturbation trials in block 4, by interface group.  For both blocks of trials, the P+F group had significantly faster trial completion times compared with the P.  Also, within each group, the perturbation trials in block 4 were significantly slower than the normal trials in block 3.  Figure 3b shows the differences between the two interface groups in terms of percent change in trial completion times between matched trials from block 3 and block 4 (e.g., trial 61 was compared with trial 41).  The completion times for the P+F group increased by 24% on average, whereas the completion times for the P group increased by 43% on average; this difference between the two groups was statistically significant.  These results show that the P+F group was better able to adapt to the perturbations than the P group.

====================

Insert Figures 3 & 4 about here
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Figure 4a illustrates how trial completion times varied for each interface group as a function of the magnitude of the perturbation.  The completion times increased as the time constant multiple increased for both groups.  There were statistically significant differences between the two groups at the multiples of 0.1, 2.5, 5, and 10x.  Applying linear regression, the intercept, slope, and standard deviations of the P group were larger than those of the P+F; the R-squared value was smaller for the P group compared with P+F.  Figure 4b shows the results of regression analyses performed on individual participant data; one regression analysis was conducted for each participant, followed by averaging of the slopes and intercepts.  The slopes were significantly lower for the P+F group compared with P; the intercepts were lower for the P+F group compared with P, but not significantly so.  These results also show that the P+F group was better able to adapt to the perturbations than the P group.


Goal variable measures. Goal variable measures provide another set of indicators for success in adapting to change as well as an assessment of stability of control.  Figure 5 shows the results comparing block 3 (normal trials) and block 4 (perturbation trials).  The mean rise times within each block were roughly the same for the two groups.  However, the perturbation trials in block 4 were significantly slower than the normal trials in block 3 (99% for P and 93% for P+F participants, from matched trials in blocks 3 and 4).  This result suggests that the negative impact of the perturbations on rise times did not differ for the two groups.


The mean oscillation times in each block were significantly slower for the P group.  Both groups experienced significantly slower oscillation times between blocks 3 and 4 (112% for P and 58% for P+F participants, on average).  The difference between the groups was much higher in block 4 than in block 3.  This result suggests that the perturbations had a proportionately larger negative impact on stability for the P group compared with P+F, based on oscillation times. 


The mean number of oscillations per trial was significantly lower for the P+F group.  Both groups experienced a small decrease (6% for P and 10% for P+F participants, on average) between blocks 3 and 4, but this decrease was not statistically significant.  This result suggests that the perturbations did not impact stability for both groups, based on the mean number of oscillations per trial.


The mean normalized maximum deviations from the target regions was significantly lower for the P group in block 3.  However, in block 4, this difference was not significant, with an increase for the P group and a decrease for the P+F group (51% increase for P and 26% decrease for P+F participants, on average).  This result suggests that the perturbations had a larger negative impact on stability for the P group compared to the P+F, based on the mean normalized maximum deviations from the target regions.


In summary, the P+F group exhibited more stable control in the face of perturbations than did the P group, in terms of both oscillations times and maximum deviations from the target regions.  The perturbations had a similar negative impact on rise times for both groups.  The perturbations had no significant impact on average number of oscillations per trail.

====================
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AH trajectory variability.  AH trajectory variability analyses provide a quantitative assessment of level of control.  In these analyses, the variability of state trajectories at each level of the AH was calculated for each block of trials.  These values were compared between participants at each level of the AH.  Based on previous research (Yu et al., in press), two AH levels, Abstract Function and Physical Function, were chosen for analysis to assess whether the participant group was engaged in higher-level or lower-level control, respectively.  Figure 6 shows the variability distributions for participants in each interface group for the four blocks of the experiment.  The horizontal axis represents the ranges in variability values; the vertical axis represents the number of participants that had a variability value in that range.


Figure 6a shows the results of the variability analyses for the AH level of Abstract Function.  As participants gained experience, both groups exhibited less variability at this level (from blocks 1 to 3).  In block 4, the variability increased for both groups compared with block 3.  However, the P+F group had more participants with relatively lower variability than did the P, although this difference was not statistically significant (i.e., 6/8 P+F and 2/8 P participants had values below the median for both groups; nonparametric Fisher test for a small sample size: p=0.13 exact, two-tailed).  This result suggests that P+F participants may be engaged in more higher-level control, compared with the P.


Figure 6b shows the results of the variability analyses for the AH level of Physical Function.  As participants gained experience, both groups exhibited less variability at this level (from blocks 1 to 3); by block 3, the distributions were identical.  In block 4, the variability increased proportionately higher for the P+F group, compared with the P.  The P group had more participants with relatively lower variability than did the P+F, although this difference was also not statistically significant (i.e., 6/8 P and 2/8 P+F participants had values below the median for both groups; nonparametric Fisher test for a small sample size: p=0.13 exact, two-tailed).  This result suggests that P participants may be engaged in more lower-level control, compared with P+F.


Control recipes. Control recipes provide a subjective assessment of level of control.  After block 3, all participants reported only one way of doing the task because they had not yet experienced any perturbations.  After the perturbation block, however, 4/8 P and 8/8 P+F participants reported adjusting their actions as a function of the simulation dynamics.  An example of this context-conditioned variability is shown in Table 1 for a P+F participant.

====================

Insert Table 1 about here

====================


The two groups seemed to differ in the extent to which they exhibited this pattern.  Three categories of control recipes were reported overall: normal/regular, slow (higher time constant multiples), and fast (lowest time constant multiple).  5/8 P participants reported only one way of controlling the simulation after block 4 (just as they had after block 3), compared to 0/8 P+F participants.  3/8 P participants reported two conditions for controlling the simulation (e.g., normal and slow), compared to 4/8 P+F participants.  Finally, 0/8 P participants reported three conditions for controlling the simulation (i.e., normal, slow, and fast), compared to 4/8 P+F participants.  These results suggest that the P+F participants reported greater signs of context-conditioned variability and adjusted their actions to achieve the goals in a manner that was tailored to the magnitude of the perturbations.  This finding provides subjective evidence for greater higher-level control for the P+F group, compared with the P.

Discussion


The experimental results are in close agreement with the rationale behind EID.  The P+F group showed signs of better adaptation to the unpredictable perturbations than did the P group, as evidenced by faster and more robust task completion times as well as more stable control of the goal variables.  Also, the P+F group showed more signs of higher-level control than the P, as evidenced by lower trajectory variability at the AH level of Abstract Function and a higher number of participants reporting context-conditioned control recipes.  Conversely, the P group showed more signs of lower-level control than the P+F, as evidenced by lower trajectory variability at the AH level of Physical Function and a higher number of participants reporting context-independent control recipes.  However, these differences were not statistically significant.


Interestingly, 2/8 P participants were also able to do relatively well in adapting to changes in component dynamics relative to all participants.  Their control recipes suggest that these participants developed analytical heuristics for controlling the process (see Table 2 for an example).  Because the goal temperatures remained the same for all trials, the steady state heater setting could be derived based on the outflow demand goals by two cognitively manageable equations (i.e., HTR1=D1; HTR2=1/3D2).  The two proficient P participants discovered these heuristics.  This result suggests that the absence of higher-level functional information may, to some extent, be compensated for by heuristics that map to higher-level functions.  This compensatory strategy only seems possible if the cognitive demands associated with analytical derivation are psychologically feasible, as they were in the case of the simple heuristics reported by the two proficient P participants.

====================

Insert Table 2 about here
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Why was the P+F group better able to rely on higher-level control and thus adapt to novelty and change?  According to EID, this advantage has its basis in perceptual coupling to emergent feature graphics.  The P+F group could see, rather than analytically derive, the state of the higher-level functions by relying on the emergent features in Figure 2.  As a result, they were better able to engage in higher-level control, and thereby adapt their actions to the unexpected changes in process dynamics.  This perceptually-based explanation for the advantage of the P+F interface was tested in the following experiment.
EXPERIMENT 2


The purpose of this experiment was to investigate the impact of changes in interface form on success in adaptation and on level of control with the P+F interface only.  Two types of form perturbations were introduced, one disrupting higher-level functional information (e.g., mass and energy variables) and another disrupting lower-level physical information (e.g., individual component values).  According to EID, perturbations of higher-level forms should have a stronger negative impact on performance than perturbations of lower-level forms because perceptual coupling to emergent feature graphics is said to be the basis for higher-level control and adaptation success. 
====================
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Method


The method used in this experiment was very similar to that used in the first.  Again, there were 4 blocks of 20 trials each, with the first 3 blocks being normal trials and the last block being perturbation trials.  16 different participants each operated the simulation for approximately 25 hours in total, again resulting in approximately 400 participant hours of data collection.  As shown in Figure 7, the only difference in this study was the independent variables being manipulated.  A repeated measures, mixed design was adopted with interface form perturbations (Low Level [LL] or High-Level [HL]) as a between-participants variable, and trial type (normal and perturbation) as a within-participants variable.  For the first three blocks of 20 trials, the two groups used the same (unperturbed) P+F interface, with invariant (i.e., consistent) LL and HL forms.  During block 4 for the LL group, the scale values of the low-level forms varied in unpredictable ways from trial to trial.  No changes were made to the high-level forms.  Conversely, during block 4 for the HL group, the scale values of the high-level forms were varied in unpredictable ways from trial to trial.  No changes were made to the low-level forms.  Note that both of these manipulations change the form of the P+F interface but not the underlying simulation dynamics.  Also, the magnitude of the changes in forms was physically the same for the LL and HL groups (see Hajdukiewicz, 2001 for details).

Figure 8 illustrates the nature of the two types of form perturbations in more detail.  During the first 3 blocks, the mass inflow and outflow scale limits were consistently the same, thereby creating an emergent feature display (i.e., a line connecting inflow and outflow).  When the inflow and outflow were equal, this line was vertical, signifying that the mass level should be stabilized.  The energy balance graphic worked in the same way.  During block 4, however, this emergent feature was destroyed for the HL group.  The mass (and energy) inflow and outflow scales were no longer the same within a trial and they were varied unpredictably across trials.  However, the scale limits on individual components were consistently kept intact.  If, as we predict, P+F participants control the process primarily by being perceptually coupled to emergent feature graphics, then this HL manipulation should severely degrade performance.


As shown in Figure 8, the manipulation for the LL group was analogous. During the first 3 blocks, the scale limits on the components were consistent across trials, thereby providing a predictable basis for being perceptually coupled to low-level information. During block 4, however, this consistency was destroyed.  The scale limits on the individual components were varied unpredictably across trials.  However, the high-level emergent features were consistently kept intact.  If, as we predict, P+F participants control the process primarily by being perceptually coupled to emergent feature graphics, then the LL manipulation should not degrade performance as much as the HL manipulation.

Results


Task completion time. Trial completion time provides a measure of success in adapting to interface form changes.  Figure 9a shows the results for normal trials in block 3 and perturbation trials in block 4, by group.  For block 3, there was no statistically significant difference in completion times between the HL and LL groups, as expected since the treatments were identical to this point.  However, with the form perturbation trials in block 4, the HL group exhibited significantly slower completion times compared with the LL.  For both groups, the perturbation trials in block 4 were significantly slower than the normal trials in block 3.


Figure 9b shows the differences between the two interface groups in terms of percent change in trial completion times between matched trials from block 3 and block 4.  The times for the HL group increased by 33% on average, whereas the completion times for the LL group increased by 14% on average, a statistically significant difference.  These results show that higher-level form perturbations had a proportionately larger negative effect on completion times than lower-level form perturbations, suggesting that perceptual coupling to emergent feature graphics plays a key role in control with the P+F interface.
====================
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Goal variable measures. Goal variable measures provide another set of indicators for success in adapting to change as well as an assessment of stability.  Figure 10 shows the results comparing block 3 (normal trials) and block 4 (perturbation trials).  The mean rise times in block 3 were roughly the same for the two groups; in block 4, there was a larger but not statistically significant difference between the groups.  However, within each group, the perturbation trials in block 4 were significantly slower than the normal trials in block 3 (41% for HL and 27% for LL participants, from matched trials in blocks 3 and 4).  This result suggests that the form perturbations negatively impacted rise times for both groups.


The mean oscillation times in block 3 were roughly the same for the two groups.  The difference between the groups was larger and statistically significant in block 4 compared with block 3.  Both groups experienced significantly slower oscillation times in block 4, but the impact was far greater on the HL group (228% for HL and 110% for LL participants, on average).  This result suggests that the form perturbations had a proportionately larger negative impact on stability for the HL group than the LL, in terms of oscillation times.


The mean number of oscillations per trial in block 3 was similar for both groups.  Both groups experienced a statistically significant increase between blocks 3 and 4, but the impact was far greater on the HL group (190% for HL and 51% for LL participants, on average).  This result suggests that the form perturbations had a proportionately larger negative impact on stability for the HL group than the LL, in terms of number of oscillations per trial.


The mean normalized maximum deviations from the target regions were roughly the same for each group.  There was a small, non-significant increase for both groups between blocks 3 and 4 (15% for HL and 24% for LL participants, on average).  This result suggests that the form perturbations had very little impact on stability for both groups, in terms of average normalized maximum deviations from the target regions.


In summary, the form perturbations had a significantly larger negative impact on stability for the HL group compared with the LL, in terms of both oscillations times and number of oscillations per trial.  The perturbations had a negative impact on rise times for both groups.  Finally, there was very little impact of the form perturbations on the mean maximum deviations from the target regions.

AH trajectory variability.  AH trajectory variability analyses provide an assessment of level of control.  Figure 11a shows the results for the AH level of Abstract Function.  As participants gained experience, both groups exhibited less variability at this level (from blocks 1 to 3).  In block 4, the variability increased for both groups compared with block 3; however, the variability seems proportionately higher for the HL group. The HL group had more participants with relatively higher variability did the LL, although the difference was not statistically significant (i.e., 2/8 LL and 6/8 HL participants had values above the median for both groups; nonparametric Fisher test for a small sample size: p=0.13 exact, two-tailed).  This result suggests that form perturbations mapping to the higher-level variables of the AH may result in less use of higher-level control, whereas form perturbations mapping to the lower-level variables of the AH may result in continued use of higher-level control. 


Figure 11b shows the results of the variability analyses for the AH level of Physical Function.  As participants gained experience, both groups exhibited less variability at this level (from blocks 1 to 3).  In block 4, the variability distribution remained the same for the HL group, but increased substantially for the LL.  All of HL participants had lower variability than did the LL participants (nonparametric Fisher test for a small sample size: p=0.0002 exact, two-tailed).  This result suggests that form perturbations mapping to the lower-level variables of the AH result in less use of lower-level control, whereas form perturbations mapping to the higher-level variables of the AH result in continued use of lower-level control.  


Control recipes.  Control recipes provide a subjective assessment of level of control.  After block 3, all but one of the participants (8/8 HL and 7/8 LL) reported using some higher-level forms to control DURESS II (e.g., balancing mass in and mass out with a vertical line).  After the perturbation phase, 7/8 LL participants still reported using some higher-level forms (e.g., “adjust the heater setting so energy in = energy out”), whereas only 3/8 HL participants reported doing so.  5/8 HL participants reported either using components in specific ways (e.g., heuristics) or trial and error to achieve the target regions.  These results suggest that the higher-level form perturbations may have resulted in less use of the higher-level forms, making it more difficult for HL participants to achieve higher-level control.

Discussion


The experimental results are again in close agreement with the rationale behind EID.  The form perturbations had a larger negative impact on completion times and stability for the HL group, compared with the LL, suggesting that perceptual coupling to emergent feature graphics plays a key role in controlling the process with the P+F interface.  There was also some evidence linking coupling to emergent feature graphics with level of control.  The LL group exhibited signs of relying more on higher-level control than the HL group in the AH variability analyses and the control recipes.  Conversely, the HL group exhibited signs of relying more on lower-level control than the HL group.

====================
Insert Table 3 about here

====================

Interestingly, just as in Experiment 1, there were some exceptions to the general pattern of results.  2/8 HL participants did not appear to be affected by the higher-level form perturbations.  Upon examining their control recipes, both of these participants reported using analytical means of deriving the functional information that had been perturbed by the form manipulations.  Table 3 provides one example demonstrating the reported use of heuristics in bold.  This result suggests that the absence of higher-level form invariants may, to some extent, be compensated for by heuristics that map to higher-level functions.  This compensatory strategy only seems possible if the cognitive demands associated with analytical derivation are psychologically feasible, as they were in the case of the simple heuristics reported by the two proficient HL participants.

CONCLUSIONS


Designing to support worker adaptation to novelty and change is necessary and possible.  EID provides a theoretical basis for achieving this goal.  Displaying functional information can result in greater adaptation because participants can become perceptually coupled to emergent feature graphics, thereby exhibiting higher-level control.  In some cases, it is still possible to achieve higher-level control in the absence of these pre-conditions, although this requires knowledge and cognitive resources.  This path represents the more difficult road to successful adaptation.


Several issues for research could be pursued to address the limitations of this research.  First, it would be useful to replicate these findings in other application domains and in larger-scale testbeds that are more representative of those found in industry.  Second, it would also be interesting to investigate the impact of other types of perturbations to see if the same results hold.  Third, the scope of EID should be extended, both theoretically and empirically, to address adaptation at the team and social-organizational levels.  


Finally, the generalizability of the findings obtained here should be investigated.  The results in this article are surprisingly similar to those obtained in the motor control literature.  For example, Kelso, Tuller, Vatikiotis-Bateson, and Fowler (1984) investigated a very different type of problem than the one studied here, namely the motion of jaw muscles during speech.  There seems to be very little reason, a priori, to believe that human-computer interaction with a thermal-hydraulic process simulation would have anything at all to do with unmediated human speech production.  Yet, Kelso et al. also found that people were able to demonstrate robust control in the face of novelty and change, and that this control was achieved by keeping higher-level goals constant and by modifying lower-level processes in a way that was specific to both the task goal and the nature of the perturbation.  


This strong similarity between seemingly disparate phenomena suggests that mechanical, biological, human-machine, and perhaps even social adaptation may be different manifestations of the same underlying phenomenon.  A unified theory encompassing these phenomena would represent a significant contribution to applied research in cognitive engineering because it would provide a theoretical basis for shaping adapation in complex systems.  At the same time, the theory would also represent a significant contribution to multi-disciplinary basic research in the technical, human, and social sciences because it would provide a common basis for understanding adaptation in its many, disparate guises.
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Table 1. Part of a control recipe for a P+F participant after the perturbation phase.
…

FAST REACTIONS:

- Turn on valves in the same manner as discussed before: Mo ratio of the two tanks determines sum of VA1+VB1/VA2+VB2, and respective value of Mo determines VA, VB level.

- Turn on the heater: the larger T1 or T2 appears, the higher the respective HTR should be at; however, neither of them should be above 5 initially, avoiding T1 or T2 overheated.

REGULAR REACTIONS:

- Turn on valves and heaters pretty much the same principle as above. But the heater of T1 (which requires larger T) should be set between 6-7, in order to increase the temperature faster.

SLOW REACTIONS:

- As soon as the slow reaction is observed after turning on the valves and pumps, turn every control (i.e., valves and HTRs) to its extreme value.  This can speed up the magnitudes of change.  

- After Mi’s reach the desired value (i.e., the value above green region in Mo), turn down the valves switch to the readings of FVA, and FA’s etc. so that Mi is stabilized.  Then turn VO’s to extreme value ‘til MO reaches the green region.  

- When T1/T2 reach green regions, completely shut down the heaters, until the slope of E1/E2 returns to a vertical line and then turn up the heaters to the heat flow reading below it.

Table 2. Part of a control recipe for a proficient P participant after the perturbation phase.
…

Calculate steady-state temperature

VO1X(T1-To)=VO1X30; VO2X(T2-To)=VO2X10 – of total heat required divide by 30.

i.e., HTR1=VO1X30/30=VO1, HTR2=VO2X10/30=VO2/3 is the final steady state setting of the heaters.

When T2=15deg turn T2 down to the HTR2 steady state setting to slow down the heating process. Similarly, when T1~33 turn down T1 to steady state setting.

If T1 and T2 are responding slowly to change in HTR1 and HTR2, turn HTR1 and HTR2 to T1ss (HTR1=T1goal), T2ss (HTR2=T2goal/3).  When T1 is at 33deg and T2 is at 15deg to let the system catch up to what your settings were previously.

If T1 and T2 cease to rise, increase it by 1-2 units (depends on how close to goal T1 and T2 are.

If T1 and T2 overshoot a lot, decrease HTR1 and HTR2 to zero and let it cool down till 1 unit above goal and increase it to Tss.

Basically not much different from ordinary operation.  Just remember that whatever we do, the result will appear a bit later.  So turn down or up the HTR in advance before it reaches the goal state.

Table 3.  Part of a control recipe for a proficient HL participant after the perturbation phase.
…

8. Increase HTR2 by one unit for every 3 units of MO2, keeping in mind point 1 (this will be your set point for HTR2).
9. Increase HTR1 by one unit for every 1 unit of MO1, keeping in mind point 1 (this will be your set point for HTR1).
10. Set HTR1 and HTR2 to max until T1 and T2 approach the desired temperature band.

11. When T1 and T2 are within 1 unit of the desired temperature band, set HTR1 and HTR2 to their respective settings.

12. Set VO1 equal to MO1, keeping 1 in mind.

13. Set VO2 equal to MO2, keeping 1 in mind.

14. Adjust HTR1 and HTR2 around their respective set points in order to stabilize T1 and T2, within their respective desired output temperature bands.

…
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Figure 3. a) Trial completion times for trial blocks 3 and 4 in experiment 1; b) percent change from matched trials in blocks 3 and 4.
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Figure 4.
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Figure 6. Trajectory variability distributions in experiment 1 for the AH levels of a) Abstract Function and b) Physical Function.
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Figure 8. Examples of invariant and variant scale limit changes for higher-level (HL) and lower-level (LL) groups.  All examples are based on the same work domain conditions in steady state.
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Figure 9. a) Trial completion times for trial blocks 3 and 4 in experiment 2; b) percent change from matched trials in blocks 3 and 4.
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Figure 10. Goal variable measures for experiment 2.
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Figure 11. Trajectory variability distributions in experiment 2 for the AH levels of a) Abstract Function and b) Physical Function.
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