Enter Once, Share Everywhere:
User Profile Management in Converged Networks

Arnaud Sahuguet* Rick Hull

Daniel Lieuwen Ming Xiong

Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974

Abstract

Interoperation between network types (telephony,
wireless, internet, etc.) is becoming increasingly
feasible, leading to the so-called “converged net-
work”, and to a broad new family of end-user fo-
cused “converged services”, that combine different
kinds of network connectivity (voice, text-based in-
stant and email messaging, real-time presence and
location information, and access to numerous web-
based services). A crucial but still largely unre-
solved issue in providing convenient end-user access
to and control of these services is to provide easy
access and sharing of end-user profile data, includ-
ing data about the user’s devices, services enabled,
billing arrangements, address, calendar and prefer-
ences.

This paper surveys the kinds of profile data
that are currently held in the various networks and
where/how that data is stored, identifies key stan-
dards group activities working to enable profile data
sharing, and proposes a data management frame-
work (GUPSt®") that can be used across and within
networks and organizations, to facilitate sharing of
profile data to support converged services. GUPSter
combines ideas from the federated architecture for
data integration and the Napster approach for peer-
to-peer sharing, in order to satisfy the high level
requirements coming from standards bodies such
as 3GPP GUP and the Liberty Alliance. The pa-
per describes how the GUPS®" framework can be
supported, and identifies key topics for future re-
search.

*Contact author: sahuguet@lucent.com

1 Introduction

The mobile telephony revolution has changed the
behavior of millions of people. People can now reach
and be reached anywhere, anytime. First limited to
traditional voice networks (wireless and PSTN?),
this revolution is now spreading across network
boundaries to include the internet and other net-
works, giving rise to so-called converged networks.
WAP was a first (viewed by many as unsuccessful)
way to bridge mobile telephony with the Web. The
2.5G and 3G wireless networks which followed al-
ready deliver email connectivity, instant messaging,
and web access.

The convergence of networks has quite naturally
given birth to a new breed of services — the so called
converged services — which try to make the most of
the network infrastructure in order to deliver value
to end users and revenue to operators. These con-
verged services revolve around providing informa-
tion to end-users, providing connections between
end-users with each other and/or with automated
systems working on behalf of enterprises, and en-
abling end-users to invoke commercial, financial or
other services outside of the network proper.

Providing these services entails the storage, shar-
ing, and use by the converged network of a broad ar-
ray of information about end-users, including, e.g.,
the correspondence between users and their devices;
awareness of presence, location, and availability of
devices and their users; and awareness of billing
models and plans (e.g., pre-paid vs. post-paid). As
network-hosted services become more complex, end-
users will insist on highly personalized renditions
of the services, which will entail the storage and
access of large amounts of personal data (e.g., de-
vice specific information, usage preferences, address
book, buddy lists, calendar, ...) This paper con-

1Public Switched Telephone Network



siders the data management technologies that will
be needed to manage end-user profile information
in the context of converged services. In particu-
lar, the paper describes how and where profile data
is currently stored in the various networks, surveys
relevant industry standards groups, identifies key
requirements for profile data management, and pro-
poses a framework that fulfills these requirements.

The framework presented here, called GUPSt®' | is
based on three central ideas. First is that a stan-
dardized schema for (most) user profile information
will emerge from the activities of the 3GPP Generic
User Profile (GUP) standards body [6]. Second is
the adaptation of the peer-to-peer paradigm pio-
neered by Napster [3], whereby profile data will
continue to reside in widely distributed networks
and locations, but information about where to find
the profile data will be easily accessible, e.g., from
a centralized meta-data manager analogous to the
Napster server. And third is the adaptation of tech-
niques from federated data management [16, 24, 29)
to the specialized context of profile data manage-
ment. A variety of other technologies are also used
in the GUPSY" framework, including technologies
around XML, access control, and data replication
and synchronization.

The key contribution of this paper is to iden-
tify profile management for converged services as a
crucial data management problem for the coming
years, and to provide a promising framework and
structure for attacking this problem. While point-
ing the way towards a solution, the paper also raises
a number of open research questions on how to flesh
out the framework.

This paper is focused primarily on the data man-
agement aspects arising in profile data for converged
services. It is beyond the scope of this paper to
provide detailed consideration of other technologies
needed to support converged services, such as pref-
erence and policy management; workflow and col-
laborative systems; distributed systems; secure data
transmission; standards for sharing information and
control across networks and devices; new forms of
call models and session management; and continued
work on natural language interfaces.

The remainder of this paper is organized as fol-
lows. We first consider requirements for profile
data management in support of converged services,
by describing motivating examples and then listing
the high-level requirements (Section 2). We then

overview the current state of the art in terms of
data management for user profile in the various do-
mains/network and give an overview of the 3GPP
GUP (Generic User Profile) initiative (Section 3).
Section 4 presents a high-level description of the
GUPSte" framework, and Section 5 gives variations
of the basic framework, more detail, and a discus-
sion of how GUPSt®" fulfills the requirements given
in Section 2. We present some related work and
open issues (Section 6) before we offer some future
work and our conclusion in Section 7.

2 Converged Services:
Examples & Requirements

This section overviews the requirements that a pro-
file data management framework for converged ser-
vices should satisfy. We first present two illustrative
examples, and then provide a listing of the essential
requirements.

2.1 Example 1: Roaming Profile

Let us consider a corporate employee Alice work-
ing for Lucent Technologies. She owns a Sprint-
PCS cell phone that she uses for both business and
personal matters. She stores her phone book and
phone preferences (e.g., ring tones, speed keys) on
the phone. Alice’s SprintPCS contract offers WAP
capabilities, and she can store WAP bookmarks on
her phone. When she travels abroad she also car-
ries a GSM mobile phone operated by Vodafone.
The SIM card she puts inside the phone contains
her “European” phone book and phone preferences.
Alice also owns a personal data assistant. Her per-
sonal address book and calendar information are
synchronized with her Yahoo! account. Her corpo-
rate address book and calendar are securely hosted
by Lucent.

As we can see from this scenario, data is spread
all over the place, in different networks. With ex-
isting technology, Alice’s access to data is quite re-
stricted, making it difficult or impossible for her to

e access her corporate calendar when she is trav-
eling in Europe

e share her address and phone book among
SprintPCS, Vodafone and Yahoo!

e keep her personal data and preferences if she



decides to switch from SprintPCS to AT&T,
(note that this is usually not an issue in Eu-
rope because the data is stored on the SIM card
that can be transparently exchanged between
devices)

A framework for profile data management should
enable easy and efficient access, sharing, update,
and synchronization of this data.

2.2 Example 2: Selective reach-me

Mobile telephony makes it possible to contact peo-
ple anytime, anywhere. This reach-me service can
be customized in many ways. First, a callee can
make (or program) the decision of accepting a call
or not. Operators already offer basic call screening
capabilities based on caller ID. Second, a callee can
define the best way(s) to contact her.

In a converged network situation (see previous
example), a user usually has more than one way
to be reached. At work for instance, Alice can be
reached (1) on her office phone (and voice mail if
she is not in), (2) via email, (3) via instant mes-
saging, (4) via VoIP (if she runs a soft phone like
MSN messenger), etc. At home, she can be reached
on her home phone. Potentially she can be reached
anywhere on her cell phone, depending on the cov-
erage. When she is near a WiF1i hot-spot she can be
reached on her laptop via email, IM, and VoIP. De-
pending on Alice’s location, the choice of the best
communication medium varies: quality, price, na-
ture of the communication, etc.

The selective reach-me service permits the net-
work to optimally route a call (taken in its broadest
sense) to reach Alice. To do so, the service needs
to aggregate information for all the networks Alice
is in contact with:

e location information, on/off air from the Wire-
less network

e call status from the PSTN network

e presence information (e.g., IM status, entries
in a log web site) from the Internet

e call status from the VoIP network

e calendar information from Yahoo! or from cor-
porate intranet

e devices owned by Alice with their respective
capabilities.

Based on all these information (some static, some
dynamic; some provided by the network, some pro-
vided by Alice), the service should be able to make
decisions such as:

e during working hours (9am-6pm), if Alice pres-
ence is “available” (verified with IM): call office
phone first, and then try soft phone

e from 8-9am and 6-7pm, Alice is commuting;:
call cell-phone

e on Fridays, Alice is working from home: call
home phone

Importantly, the access and processing of the dis-
parate and distributed data must have fast response
time, so that a selective reach-me decision can be
rendered in just a few seconds.

2.3 A Listing of the Essential Re-
quirements

This subsection lists requirements that should be
satisfied by a profile management framework for
converged networks.

To set the stage, we note that in the converged
network, both profile data and services will be
widely distributed. This is illustrated in Figure 1,
which shows the world of profile data management
from the perspective of a Wireless Service Provider
(WSP). In particular, some services will be hosted
within the WSP: e.g., Presence and Availability
Management (PAM), pre-paid billing services (Pre-
Pay). Others will reside outside. Also, different
subsets of the profile data will be accessed by dif-
ferent external applications.

) —
Mobile
Personal
Assistant

) —

Unified
Messauiny

oo0o

Wireless SP

=

Local

storave
farm

I o oy S

HLR PAM PrePay XML data

Selective
Reach Me

~

Autonomous Data Stores

Figure 1: Converged Network: profile and services

We now list the key requirements on a profile
management framework. These are based on re-



quirements identified by key standards bodies, and
on experience at Bell Labs in providing support for
existing and emerging converged services.

1.

Common Data Model: Profile data should
be accessible through a common data model,
regardless of where or how it is physically
stored or generated. The importance of sup-
port for easy access to profile data cannot be
over-emphasized, given the network operators’
intense interest in encouraging 3rd party de-
velopers to create the bulk of applications that
will use and build upon converged services.

Data Richness: End-user profile information
will become increasingly rich and varied? as the
services being supported become increasingly
rich and varied. In particular, data may be
deeply nested, involve complex integrity con-
straints, and for each end-user have different
statistical characteristics.

Data Transformation: Data sources on the
various networks have radically different struc-
tures and data models. Sharing data across
these repositories, and also between network
and terminal devices, will require efficient data
transformation capabilities.

Data Placement: The placement of data
will be dictated by end-user desires (the end-
user may not trust some entities to hold pro-
file data) and by optimization needs. In many
cases profile data will be stored redundantly
(e.g., telephone book may be stored in the end-
user’s phone, with a “primary” copy held by
an internet portal, and with a cached copy
held by a wireless service provider, to pro-
vide fast synchronization with the end-user’s
phone). Transformations may be used between
redundant copies of data.

Data Integration: Many converged services
will use profile data about a single end-user
that is spread across multiple sources. Because
the profile data may be distributed in different
ways for each end-user, common tools should
be provided to perform needed data integra-
tion. We expect data integration of profile data
to be simpler than in the traditional setting,
because profile-related queries do not typically
require exotic joins ®: most of them are lookup

2 Just look at the information stored in Palm Pilot.
3For example, here is a query that we would not need

to support:

“Among all phone users who were on the NJ

transit train to Penn Station arriving at 7:13pm, I want the

10.

queries like “retrieve presence information for
Alice”, “retrieve Alice’s appointments for to-
day”, “retrieve Alice’s buddies who are avail-
able” etc.

Data Reconciliation: Profile management
must include mechanisms for reconciliation of
slightly inconsistent data (e.g., for synchroniz-
ing address book on phone with address book
in network, or merging of address books from
disparate places). End-users should be able to
provision the policies used to reconcile profile
data.

Data Synchronization: As indicated above,
profile data will be cached, which implies the
need for convenient synchronization mecha-
nisms, and triggers to indicate when data has
become stale. The need for synchronization is
most apparent with handhelds, but it is also
needed between different networks and/or en-
terprises.

Access to Meta-data: Because profile data
will continue to be widely distributed, there
must be mechanisms available for discover-
ing where relevant profile data can be found.
In particular, the schema of profile data
along with an indication, for a given user, of
where/how the actual profile can be accessed
must be made available to qualified applica-
tions. Looking forward, as this kind of meta-
data becomes re-ified and widely available, it
will be natural to expand on the traditional
meta-data representations (e.g., SQL’s data
definition capabilities, or XML Schema), to in-
clude information about data placement, rules
for data reconciliation, etc.

Access Control: The end-user should be in
control of what, when, how, and to whom pro-
file data is shared. Mechanisms must be pro-
vided so that end-users can specify (possibly in-
tricate) policies about access control (e.g., that
presence data is revealed to co-workers only at
times when the end-user is “at work”).

Security: Data transmission should be se-
cure; in the traditional wireline network this
security was essentially guaranteed because the
network was wholly controlled by the service
provider; in the converged network encryp-
tion techniques will be needed. Authorization

one who received a call while he was already on the phone:
he put the first call on hold for less than 30 seconds before
he resumed the call.”



11.

12.

13.

mechanisms need to be supported.

Data Provisioning: As the network-hosted
profile data becomes richer and more volumi-
nous for each end-user, it is increasingly impor-
tant that end-users can provision (i.e., insert,
change, or delete) their profile data at will (self-
provisioning). The provisioning should be ac-
cessible through a variety of interfaces, includ-
ing large-screen web browser, hand-held wire-
less device, and even voice.

Provisioning interfaces should be automatically
generated and should provide some guarantees
(e.g., constraint checking). Users should have
the impression of “enter once, use everywhere”,
i.e., the distribution and heterogeneity of the
actual profile data should be transparent, ex-
cept in connection with privacy of the data
and trust in the organizations holding the data
and/or meta-data.

The area of provisioning is often neglected in
the data management community, where peo-
ple assume wrongly that the data is already
there.

Reliability: Telecommunication services must
be responsive and simply cannot go down; wire-
line telephony is near real-time and 99.999%
uptime is the norm. By merging telephony
networks (PSTN and wireless) with other net-
works, users’ expectation is to find the same
quality of service with more features.

Scalability and Performance: These are
key issues that need to be addressed. Con-
verged services have to be scalable to support
millions of subscribers. Therefore, data has
to be partitioned and stored at different sites.
Converged services have to be engineered based
on the fact that the weakest link(s) will be part
of the non-managed networks (e.g., Internet).
Many telecommunication services require real-
time performance, e.g.,, in case of call deliv-
ery, response time of a transaction has to be
within hundreds of milliseconds. Various op-
timization techniques will have to be used to
overcome these limitations (e.g., query opti-
mization, caching, pre-fetching)

3 Profile Management in Con-
verged Networks

In this section, we give an overview of the environ-
ment within which a profile management framework
must reside. In 3.1 we discuss where profile data is
found in the various networks today. In 3.2, we
briefly discuss the activities of 3GPP GUP, the pri-
mary standards body currently working in the area
of profile data.

Perhaps the most important idea in this section is
that we expect the 3GPP GUP standards group to
be successful in creating and promoting a standard-
ized schema that captures a substantial amount of
end-user profile data; this standardized schema will
become a key component of any future framework
for profile management.

3.1 Overview of Profile Data in the
Different Networks

3.1.1 PSTN networks

The Public Switched Telephone Network is the col-
lection of interconnected public telephone networks,
based on circuit-switching. In order to avoid a fully-
meshed architecture, switches are used to connect
together end-points (see Figure 2).

|| class 4

Lﬁ Switch
Class 5 || L2 Class 5
Switc "  Switch

i

|
MMT
=

Figure 2: A PSTN network

The role of the switch is to take care of the call
control signaling, the media termination and the
logic. In current PSTN deployed architectures, the



switch is a multi-purpose box (e.g., Lucent 5ESS
or Nortel Meridian, or the emerging softswitches)
which encapsulate all these functionalities. User
profile information is stored inside the switch itself,
which makes it hard to access and extend.

User profile information stored in switches de-
pends on the nature of the services supported by
the switch itself: call forwarding number, call bar-
ring numbers, caller id flag, 800-number resolution
(when the user is a company), etc.

Historically, provisioning of profile data in the
PSTN has been quite cumbersome. Most provision-
ing must be performed manually by network oper-
ators rather than the end-user. In some cases (e.g.,
to set call forwarding numbers) the end-user can
self-provision through a phone’s keypad, a severely
limited interface. Technology is now emerging for
providing a web-based interface for self-provisioning
of this data, but is not yet widely available.

3.1.2 Wireless networks

An abstract view of a wireless network is presented
in Figure 3. Devices are connected to the net-
work by a Radio Access Network. Subscriber in-
formation is stored by the Home Location Register
(HLR), maintained by the subscriber home carrier.
The HLR contains permanent subscriber informa-
tion and the relevant temporary information of all
subscribers permanently registered in the HLR. For
each subscriber, its subscriber profile, location and
authentication information are stored in HLR. Sub-
scriber profile contains identity information, tele-
phone numbers, and mobile user preferences related
to services, such as call forwarding, barring, roam-
ing, etc.

A Mobile Switching Center (MSC) is a switch
(analogous to 5E or softswitch for PSTN) used for
call control and processing. The MSC also serves as
a gateway to the PSTN network. The MSC inter-
acts with HLR to retrieve the information necessary
for switching.

A Visitor Location Register (VLR) maintains
temporary subscriber information (snapshot of the
master copy stored in the HLR) in order to han-
dle requests from subscribers who are covered by
the VLR. When a user moves from one cell (man-
aged by a RAN) to another, a different VLR may
be used. The new VLR will send this new location
information to the HLR by sending a location up-

PSTN
network

Packet
Data serviny
Network
Mobile Mobile

Center Center
gVLR gVLR
i\ i\
AA - A\
/>4 />4
N\ HLR N\
A als

Radio Access Network Radio Access Network

§ g

Figure 3: A Wireless Network

date request to the HLR. The HLR will cancel the
location information in the old VLR after it receives
new location information.

A simplified interaction between the various com-
ponents can be described as follows. When a user
initiates a call, the current location and locally re-
sponsible MSC of the callee must be determined. In
order to route the call to this MSC, the routing in-
formation to the callee must be obtained. The HLR
is the only entity in the network that can poten-
tially supply such routing information. Therefore,
a subscriber’s HLR must be interrogated for each
connection setup to the mobile subscriber.

HLR is indispensable in wireless networks. It has
to perform database operations for different types
of events/messages initiated from wireless networks,
for authentication (using AAA* servers), registra-
tion, call delivery, short message services, billing,
etc. A typical HLR stores information for mil-
lions of users in main memory relational databases.
Most read-only queries performed by HLR are sim-
ple lookup queries (e.g., location of the callee). Up-
dates can be initiated by mobile subscribers (e.g.,
update transaction when a mobile subscriber’s loca-
tion is changed) or provisioning centers (e.g., when
a user changed her call forwarding number).

The next generation of wireless networks (3G)
includes both voice and data. User profile infor-
mation related to data services (e.g., VPN config-
uration, data access quality of service, service level

4 Authentication, Authorization, Accounting



agreements, etc.) is becoming more and more im-
portant.

We deliberately do not include here the IP-based
wireless network based on 802.11 (a.k.a. WiFi) hot
spots. For most of them no user profile information
is stored on the access point. Consolidation efforts
lead by companies like Boingo and NetNearU will
probably make this change.

3.1.3 Voice-over-IP (VoIP) Networks

VoIP networks — as the name implies — deliver voice
using the Internet protocol (IP). The delivery of
voice is initiated using a signaling protocol like STP
or H.323. Endpoints are IP phones or softphones
(all software) which can talk the signaling protocol
and process digitized voice using codecs. VoIP net-
works can be connected to other networks (mainly
PSTN) using gateways that (1) perform the en-
coding/decoding of voice and (2) translate SIP ad-

dresses into phone numbers.
ul? =
g™
SIP
Endroints

SIP Enabled
IP Network

SIP _Reuistrar
PSTN to SIP

Gateway
Access #h.
\@ Proxy

II\HIINI
sIP
Endvulnts

Figure 4: A SIP-based VoIP Network

Unlike PSTN and Wireless networks, VoIP net-
works are not network-centric from either a call
control point of view or a user profile management
point of view. This permits a wide range of imple-
mentation strategies, which are still being explored
by the industry. In general, much of the “intelli-
gence” (and therefore profile information) in VoIP
networks is stored at the end-point. For instance,
IP phones (soft or hard) usually store address book,
call logs, forwarding preferences, etc. Some profile
data is found in the network, however. In the case of
SIP, network components consist almost exclusively
of SIP registrars or SIP proxies. SIP registrars sim-
ply store a mapping between a SIP address (a VoIP
phone number) and the corresponding IP address
of the endpoint. SIP proxies are used for message

routing and may store some user information. In fu-
ture SIP-based services, proxies will probably make
use of user profile information coming from other
databases. And moving further in this direction,
some emerging HLRs will support SIP, and act as
a centralized SIP profile and location management
center, in much the same way as it serves for wire-
less calls [12].

3.1.4 Web

The Internet consists of machines connected via the
IP protocols, some of them are servers, some of
them are clients. We can distinguish between the
public Internet (the Web) and the private Internet
(the numerous intranets managed by corporations),
usually isolated from the Internet by firewalls.

A broad variety of profile data is stored in the
machines that form the internet, including

e bookmarks

e address book

e computer preferences

e calendar information (iCal, vCal, Exchange)

e e-commerce profile data (shipping addresses,
wish lists, buying patterns, etc.)

e employee information stored in directory
servers

e presence information (e.g. instant messaging
client, connection to DHCP servers, etc.)

e web site log files
e edge-router caching and routing policies

e cross network info: ISP info about a user being
connected or not and its IP address and calling
phone number (in the case of a modem).

Note that solutions to unify web-accessible pro-
file data have been proposed. Netscape roaming
profiles are based on (1) a schema describing a
limited set of user profile information and (2) a
client/server protocol (LDAP or HTTP). Roaming
profiles make it possible for a user to store her pref-
erences (address book, bookmarks, cookies, brows-
ing history) in a central server and have access to
it from any client.

In this section we have seen that user profile in-
formation is spread across many machines and or-
ganizations on the various networks (see Figure 5).



|| Network | Locations of Profile Data ||
PSTN Class 5 switches, billing systems

Wireless | HLR, VLR, MSC, billing systems
VoIP end-user device, SIP registrar/proxy, AAA
‘Web end-user device, ISP, portal,

e-merchant, enterprise, edge-router, ...

Figure 5: Where profile data is stored

3.2 Overview of 3GPP GUP Goals

Several standards bodies and consortiums address
the issue of profile data. Some view preference in-
formation as a kind of data that should be main-
tained alongside profile information. We focus here
primarily on GUP. Other efforts will be presented
as part of related work (Section 6).

3.2.1 3GPP Generic User Profile (GUP)

The 3rd Generation Partnership Project (3GPP) is
a collaboration agreement that was established in
December 1998. The scope of 3GPP is to produce
Technical Specifications and Technical Reports for
a 3rd Generation Mobile System based on evolved
GSM core networks and the radio access technolo-
gies that they support.

As part of its numerous efforts, 3GGP has
started the Generic User Profile effort as a way to
standardize the management of user profile informa-
tion. Because of the enormous number of wireless
users and the strong interest that the wireless sec-
tor has in continuing to host, or at least to provide
access to, end-users subscriber data, we expect that
the GUP effort will flourish, and will become one of
the dominant forces in helping to standardize the
area of profile management.

Although 3GPP GUP is focused primarily on
profile management for the 3G network, we expect
that GUP will address profile data that resides else-
where but is relevant to 3G (e.g., calendars, which
can play an important role in preference around
privacy). The GUP working group is also estab-
lishing links with other standards groups that are
concerned with profile data, including 3GPP2 and
Liberty Alliance [2]. For this reason, we expect the
GUP activity to be a dominant force in profile man-
agement for converged services in general, not just
for 3G wireless.

3.2.2 GUP vision

The GUP vision starts by looking at the current
problems:

e great quantities of data, spread all over:
As mentioned previously on this section, data is
stored in many different entities (e.g., network
components, IT information systems, user de-
vices). Numerous and incompatible schemas
and models are used to represent and store the
data. Moreover, data is not often reused — re-
quiring redundant storage, which leads to in-
consistencies and wasteful re-entry.

e terminal management: A key focus of GUP
is to make the management of end user termi-
nals (provisioning and synchronization) easier.
GUP has already identified SyncML [4] as the
protocol for synchronization.

e customer care: End user problems must be
able to be diagnosed and fixed via the network.

e multiple protocols: There is a need to sup-
port protocols for communication between net-
work components, between network compo-
nents and terminals, and between terminals
(e.g., phone < laptop).

e incompatibilities across domains: Various
domains usually use incompatible data mod-
els, schemas and protocols. Requirements are
also radically different (e.g., real-time, reliabil-
ity, security, etc.).

3.2.3 GUP requirements

Even though GUP is still in its early stage, the fol-
lowing requirements for GUP have been identified:

e harmonized data description

— common data model

— extensible

— compatible with GUP information model
The information model consider a user
profile as a collection of profile compo-
nents. A component is used as a unit of
storage and access control. Components
are linked together by the identity they
refer to. See Figure 6 for the correspond-
ing UML diagram.

e harmonized query/update interface

e common transport mechanism



Generic User Profile
1

*

Profile Component

| dentity

*

Data Element

Figure 6: GUP information model

e common security protocols

e privacy

Although not a formal requirement of GUP, it is
very likely that the GUP group will adopt XML as
the underlying format for the common data model
and for data exchange.

It should be clear that the requirements we have
listed in Section 2 are a natural generalization of the
GUP requirements to support services across the
converged network, not just across the 3G wireless
network.

At present, the GUP group has not specified a
reference architecture that can be used to provide
simple and focused access to profile information.

4 GUPs* in a nutshell

This section introduces the high-level GUPSte" vi-

sion, in its most basic form. The following section
presents a variety of extensions and alternative for-
mulations.

4.1 Napster + GUP = GUPster

To summarize in one sentence what GUPSt' is all
about, we can say that GUPSt®' is to user profile
components what Napster was to music files.

In Napster, users willing to share music files join
the Napster community by registering their files on
the Napster central server. The server stores meta-
data about files and users. When a user wants to

retrieve a given file, it sends a request to the Napster
server and gets back list of peers (other users) who
have registered this very file. The user can then ask
for the file directly from the peers.

In GUPSte" | data stores willing to share user pro-
file components join the GUPSt®" community by reg-
istering their components on the GUPSt®" server.
The server stores meta-data about data stores and
components (e.g., location, access control, etc.).
When an application (e.g., client application, data
store, etc.) wants to retrieve a given component, it
sends a request to GUPSt®" and gets back a list of
data-stores which have registered this very compo-
nent. The application can then ask for the compo-
nent directly.

4.2 Overview of the GUPS" architec-
ture

The GUPSt" architecture is presented in Figure 7
and consists of client applications, GUP-enabled
data-stores and the GUPSte" server.

Client applications are applications which need
to access user profile information for both query and
update. Selective reach-me presented in Section 2.2
is a good example.

Data-stores are components which store and
manage user profile information, such as HLRs,
presence servers, portal sites, etc. Data stores
need to be GUP-enabled in order to participate in
the GUP community. Concretely, this means that
an adapter is put on top of the data store to of-
fer a GUP-compliant interface (protocol and data
model)®.

The GUPSY®" server is the central repository
of meta-data regarding user profile components.
Among other things, it stores coverage (how the
GUP schema is mapped onto existing data stores)
and access control information.

Note that “central repository” has to be under-
stood from a logical point of view and may be im-
plemented as a constellation of connected servers.
In the simplified context of this section, we envi-
sion GUPSt®" being supported in a manner similar
to the UDDI registry [5], i.e. a family of mirrored
servers hosted by a consortium of enterprises and

5As of this writing, the details of the interface have not
been finalized yet. The data model will be XML-based and
the protocol will probably be SOAP or HT'TP.



[ ew o [ eur
/7 |adavter | /7 [ adavter |

Wireless
Network

e . [ eup |
7 Ladavter | N /7 | adavter |

w
il

Client aprlications

[ eur
I adavter N

***** g

VoIP
Network

Figure 7: GUPSt®" top-level architecture

freely available to all users.

4.3 GUPSt" in action

We assume that the we have some data stores will-
ing to share user profile components and that these
components support the GUP interface. (Figure 8
shows an example of GUPSt®" integrating data from
multiple data stores.) We now present a simplified
scenario for GUPSt®" in action. Later, we will dis-
cuss the access control aspect.

Like for Napster, the first step is for a data store
to register to GUPSt®" the components it is willing to
share. For instance, Yahoo! will tell GUPSte" that it
stores the address book of Arnaud and the address
book and game scores of Rick. Sprint PCS will
inform GUPSt®" that it stores Arnaud’s address book
and game scores. Data stores can also unregister
components.

For each user, GUPS®" maintains the coverage of

profile components by data stores. In the case of
Arnaud, the coverage would look like 8:

Coverage
O /user[@id=’arnaud’]/address-book >

{ gup.yahoo.com, gup.spcs.com }
O /user[@id=’arnaud’]/presence >
{ gup.spcs.com }

SWe assume that the GUP schema is defined with ele-
ments such as user, address-book, presence, buddy-list,
etc.

10

O /user[@id=’arnaud’]/buddy-list —
{ gup.spcs.com }
O /user[@id=’arnaud’]/payment >
{ gup.citibank.com }

A coverage is a mapping between sub-trees of the
GUP schema (expressed as XPath expressions) and
data-stores. Note that a given profile component
can be mapped to multiple data-stores.

When a client application wants to retrieve or
update a profile component, it needs to send the
request to GUPSt" | For instance, Arnaud wants to
synchronize the address book on his cell-phone. The
cell phone (through an application running on the
cell phone) will send a request to GUPSter. GUPSter
will rewrite the request and send it back to the
client.

pster

In our example, GU will return to the client

application something like:

Referral from GUPSte
gup.yahoo.com/user[@id=’arnaud’]/address-book ||
gup.spcs.com/user [@id=’arnaud’] /address-book

where || has to be understood as a choice [22].
GUPSte" does not return any data, just a referral
to be used by the client application.

The client application will then use the referral
(one of them, or both) to get the data directly from
the GUP data stores.



4.4 Schema management

A key aspect of GUPSt®' is to integrate profile com-
ponents from a large number of data stores living
in different networks.

As we already noted, since the kind of queries
we plan to support are not join-based, the “local as
view” and “global as view” approaches essentially
converge in this context. We assume that a global
schema will be defined and maintained by a stan-
dard body (e.g., 3GPP, W3C).

This is the responsibility of the GUPSt®" server
and the various data stores to make sure that the
latest version of the schema is the one being used.
Note that by design, the schema can be made more
tolerant (or not) to evolutions (e.g., using optional
elements or attributes).

Here is a possible top-level schema for user pro-
files. The exact definition (and extensions) of the
schema will be the responsibility of a standard body.

—— A possible schema for GUP
TMyProfile)

+——
|
+——
|
o
|
+——
|
e
|

+——

+——

<MySelf> (identity, address, etc.)

<MyDevices (phone, PDA, laptop, etc.)
<MyContacts> (<adress-book>, etc.)
<MyLocations> (places where I may be reached)
<MyEvents> (<calendar>, etc.)

<MyWallet> (<banking-information>)
<MyApplications>

+-- <Gaming>

4.5 Schema coverage

The schema coverage is a mapping between sub-
trees of the GUP schema and user profile compo-
nents available at the data-stores (see Figure 8).
We assume that a profile component can always be
defined as a sub-tree of the GUP schema. We ex-
clude cases where, for instance, two profile compo-
nents could not be defined as sub-trees but their join
could be. The language we use to define coverage
is a subset of XPath [28] with child- and attribute-
axis only and limited predicates, in order to have a
canonical way to navigate the tree.

For a given user, the GUPS!®" server will store

a list of mappings between a sub-tree of the GUP
schema and one or more data stores. We have al-
ready presented some examples of coverage in the

11

=

7R

. Buddy List

Orange CitiBank Yahoo!
Ricld

3

|

UP datastorey

Figure 8: Schema coverage

previous section.

Figure 9 has a more interesting example where
Arnaud’s address book is split between his corpo-
rate and personal address books.

A request for /user [@id=’arnaud’]/address-book

should return a referral to both data stores as well
as a way to merge to two XML fragments. We will
discuss this issue in Section 6.

4.6 Access control

A critical aspect of the sharing of user profile com-
ponents is privacy: users are willing to grant ac-
cess to their profile information (“enter once, use
everywhere”), provided they remain in control of
who can access this information and when. Access
control raises two issues: (i) how can the user spec-
ify her privacy shield, i.e. the set of access control
rules/policies for her profile information; (ii) how
are these policies being enforced.

Privacy shield

Conceptually the idea of a privacy shield is quite
simple: should a given request be granted access to
the data it asks for? The problem is to define what
we mean by a request. The privacy is defined in
terms of policies to be applied whenever some user
profile is requested through GUPSte",

As part of his privacy shield, for example, a cor-
porate user may want to establish the following poli-
cies: any co-worker can access my presence infor-
mation during working-hours; my boss and my fam-



A more complex coverage
O /user[@id=’arnaud’]/address-book/item[@type=’personal’] > { gup.yahoo.com }
O /user[@id=’arnaud’]/address-book/item[@type=’corporate’] +— { gup.lucent.com }

Figure 9: GUPSt®" representation of address book split across two sites

ily can access my presence information at any time;
my family can access my personal address book and
calendar.

In GUPSt®" 3 request consists of two facets: a
context and a path. The path defines what com-
ponents of the user profile are asked for. The con-
text provides some information about the context
of the request, i.e. identity of the requester (e.g.,
third party application, end user, etc.), purpose of
the request (e.g., plain request, caching request,
subscription-based request, etc.), etc. We envision
the context to be an XML document as well, defined
using a request contexrt schema.

The path can be defined as an XPath expres-
sion (returning nodes) over an instance of the GUP
schema. The context can also be defined as an
XPath expression (returning a boolean) over an in-
stance of the request context schema.

We plan to reuse as much as we can from the
emerging XACML [20] (XML Access Control Meta
Language) standard. Unfortunately, the notion of
request context in XACML is too limited (restricted
to principals) to define a sufficiently rich privacy
shield. As mentioned above, we will need to define
an XML schema for the context information as well.

Policy infrastructure

Defining policies is one point; evaluating them and
enforcing them is another. Issues to be solved are:

e who stores the policies
e who evaluates them

e who enforces them

Various standard bodies ([18, 15]) have defined
an abstract architecture for policy management,
identifying some key roles:

e policy repository: in charge of storing policies

e policy administration point: in charge of pro-
visioning the rules (i.e. letting the user access
and modify the rules that define her privacy

12

Policy
Rerository

Policy enabled
Avrvlication
or Service

Policy Policy

Decision
Point

Execution
Point

Relevant
Data

Figure 10: Policy Infrastructure

shield) and other administrative tasks (e.g.,
checking that the rules are valid)

e policy decision point: in charge of rendering a
decision based on a rule set and a context. The
decision point only returns a decision and has
absolutely no side-effect on the environment

e policy enforcement point: in charge of asking
for a decision and enforcing it (i.e. taking the
required actions). Note that in some cases, the
enforcement point uses a policy execution point

The details of the architecture are presented in
Figure 10.

Applied to our architecture, we envision the fol-
lowing distribution of roles (in the next section we
will present variations where the roles can be as-
signed slightly differently). GUPS'®" will be at the
same time the administration point (allowing end-
users to provision their policies), the policy reposi-
tory (storing policies), the decision point (comput-
ing the decision) and the enforcement point (ap-
plying the decision, i.e., sending or not a referral
to the client). The data stores will be execution
points. For 3rd party application, the policy infras-



tructure will be transparent: the application will
send a request to GUPSt®" and get back (or not) a
referral.

5 GUPs* Unleashed

In the previous section, we have presented the basic
GUPSte" where all meta-data is stored in a central-
ized way and where the server only returns refer-
rals. We now motivate and explore some variations
of this architecture.

5.1 Architectural Variations

Maintaining and managing the profile meta-data is
a central component of the GUPSt®" paradigm. In
the previous section, we described one architectural
approach for how and where the meta-data might
be managed, namely, a centralized meta-data man-
ager (MDM). That approach was inspired directly
from Napster, and assumes a UDDI-like universally
available, mirrored meta-data store.

We now explore two dimensions along which
alternatives to centralized MDM may be found.
These alternatives share many of the same tech-
nological challenges as centralized MDM (e.g., how
to specify data partitions, how to efficiently convert
real-time data into the GUPSt®"-compliant format),
and also involve some new challenges (e.g., secu-
rity for the meta-data access, hierarchical versions
of GUPSter),

5.1.1 Motivation for a revised architecture

The primary reason to examine architectural al-
ternatives is that two things are unpredictable at
present: (i) the degree of privacy about meta-data
that end-users and enterprises will insist on, and (ii)
the business model around meta-data management
that will emerge.

With regards to privacy, consider for a moment
Microsoft’s Hailstorm initiative, which proposed a
framework whereby end-user profile data (includ-
ing calendar, address book, credit card, shipping
addresses, etc.) could be stored at a central loca-
tion by a single organization (MSN in this case)
and could be shared on a selective basis with e-
merchants at the “click of a button”. As announced

13

(see [30]), this initiative was dropped (and the un-
derlying technology re-directed to a different busi-
ness model), because consumers were not willing
to have a substantial amount of their profile con-
trolled by MSN. It seems that consumers are unwill-
ing to have all of their meta-data stored in a univer-
sally available store managed by single corporation.
Further, large enterprises will probably have quite
stringent requirements about security on what in-
dividuals and organizations can hold or have access
to what end-user data. They will also have business
reasons not to share data with certain other reposi-
tories (e.g., to make it harder for customers to leave
a wireless service provider).

Many factors will be involved in the emergence of
a business model (or models) that will arise to sup-
port a GUPSt _style framework. A key question, of
course, is how will the organizations that provide
meta~-data management be funded. Various alter-
natives exist, ranging from the end-user or the data
requester paying for each use of the services explic-
itly (through a billing mechanism similar to current
phone usage), to having the service bundled with
other services (with the costs thereby “hidden” from
the end-user), e.g., as part of an internet portal or
part of wireless phone service.

5.1.2 Alternatives to MDM

e User-level distributed MDM: A simple variation of
centralized MDM is to assume that different end-
users will want their meta-data managed by differ-
ent organizations, perhaps their wireless or inter-
net service provider, their bank, an internet portal,
their employer, or even their home computer.

How will applications discover where to find the
meta-data for a given end-user? Several alterna-
tives exist. One approach is a UDDI-like univer-
sally available “white pages” that includes links
from personal identifiers to meta-data repositories.
The other extreme is that applications will be able
to find the meta-data for a given user only if that
user informs the application of where to find it. Per-
haps a compromise will emerge — a universal white
pages but with the option for people to have “un-
listed” pointers to their meta-data management.

e Hierarchical MDM: A further refinement of user-
level distributed MDM is to allow the meta-data
management for each user to be distributed.

For example, a user might specify his primary



meta-data manager to be their wireless service
provider, but have meta-data about his credit card
and other banking information be stored by a bank,
and his meta-data about internet games be stored
by an internet portal. In this example, the wire-
less service provider will “know” that the end-user
has banking meta-data and internet gaming meta-
data, but will “know” essentially nothing about it.
As indicated above, this may be especially relevant
for enterprises, who might insist that all enterprise-
relevant profile meta-data of employees be managed
directly by the enterprise.

43

This suggests that there will not be a “one
size fits all” implementation of GUPSt®" nodes, but
rather a handful of general implementations, and
then several more narrowly targeted implementa-
tions.

5.2 Query Processing Variations

In the proposed architecture, GUPSt®" is not doing
any query processing only query rewriting. Its role
is to combine coverage information and access con-
trol information to rewrite a client’s request accord-
ingly. GUPSt" does not return any data, only refer-
rals. This means that a GUPSt®" server is easier to
implement and can serve more client concurrently.

But there might be some situations where having
GUPSter do some query processing would be useful.
In the case of a client application with very limited
capabilities (e.g., a cell phone), the client may not
be able to perform some required data transforma-
tion (like our address book example where the data
is split among two stores and requires a merge).
Offering a larger variety of distributed query pat-
terns [22] like chaining, referral, recruiting (where
the request is actually migrated to a different node)
will be needed. GUPSt" should probably also of-
fer some caching to make the access to user profile
component faster.

Another important dimension concerns subscrip-
tions. In the current architecture, GUPSt®" is a re-
active (pull-based) not pro-active (push-based) sys-
tem. It is always possible to push-enable a pull-
based system using polling, but this may not be
very efficient. In our case, every polling request
needs to be checked to enforce the end-user’s pri-
vacy shield. Having the subscription handled by
GUPSte" internally would save this extra work.

These variations can always be hard-coded into

14

the various nodes of the system (the GUPSt" server

and the various data stores). But it seems that a
notion of mobile query process (as proposed in [22])
needs to be defined in order to capture the full range
of query processing that may be needed to deploy
such a distributed architecture.

5.3 How GUPS*®" addresses the GUP
requirements

We now revisit the requirements presented in Sec-
tion 2.3 and show how they are being addressed by
Gupster,

Data richness: Just like Napster has a built-in
schema to “talk” about music files, GUPSt®" main-
tains the schema which defines the structure of the
various user profile components and their relation-
ships.

The structure of the GUP schema is defined us-
ing XML as the underlying data-model. We will
motivate the choice of XML (compared to LDAP
for instance) in Section 6.

Data stores willing to join the GUPSt®" commu-
nity need to export (virtually or physically) user
profile components as XML, according to the GUP
schema.

Data transformation: When the structure of
the data hosted on the data store is not directly
compatible with the GUP schema, we assume the
existence of some wrappers/mediators in charge of
transforming the data into the right structure. The
transformation can be virtual or physical.

In some extreme cases (e.g., end user termi-
nals with very limited query capabilities), we could
imagine GUPSt®" itself (or a component part of it)
doing some further transformation if needed.

Data placement: We need to distinguish here
between (i) placement decisions made by users
(based on trust concerns) and (ii) placement deci-
sions made by the infrastructure (based on perfor-
mance concerns).

For (i), the placement is dictated by the regis-
tration of components by data stores. For instance
a user will instruct Yahoo! that it is respon-
sible for storing its address book. Yahoo! will
in turn register this component to GUPSter:
/user[@id=’Arnaud’]/AddressBook =>
www.yahoo.com



For (ii), we can imagine that data stores op-
erated by a given operator will be replicated,
transparently for the rest of the network. Ya-
hoo! for instance will store address book informa-
tion in multiple servers (e.g., us-east.yahoo.com,
us-west.yahoo.com, www.yahoo.co.uk, etc.) and
requests sent to www.yahoo.com will be routed to
the closest Yahoo! store available. GUPSt" can also
offer some caching services.

Data integration and Reconciliation: Data
integration is provided by using adaptors to con-
vert profile data from multiple repositories into a
common format. Reconciliation can be handled
by prioritizing sites or by some more sophisticated
method when GUPSte" data, is requested.

Data synchronization: The GUP working
group has already agreed to use SyncML as the syn-
chronization protocol. But this is only one aspect of
the problem because SyncML [4] is only a transport
protocol. Issues like synchronization semantics need
to be addressed. GUPSt®" does not provide specific
solution for this yet.

Security and access control: GUPS™" does
not plan to innovate in the field of security but will
try to reuse the best existing solutions. An inter-
esting issue is where the access control should be
performed. We think that GUPSY" should be in
charge of access control because it offers a single
point of access. Having access control at the level
of the data-stores would require keeping access con-
trol policies in sync.

Here is a possible way to enforce access control.
When an application sends a request to GUPSte
for a given component, GUPSY" checks whether or
not access is granted. It rewrites the query accord-
ingly (for instance only a subset of the information
asked for can be returned) and signs it, including a
timestamp. The application can send the rewritten
and signed query to the corresponding data store(s).
The store will check the time-stamp and the signa-
ture and eventually return the data. We assume
that data store will only accept queries which have
been signed by GUPSter.

Reliability:  Reliability will be achieved by
having the logical single entry point be implemented
by a constellation of GUPSt®" servers. The reliability
of data-stores themselves is independent of GUPSter.

Scalability and performance: As the logical
single point of entry, before forwarding the queries,
GUPSt®" is able to filter out spurious ones (e.g.,

15

queries which do not fit with the GUP schema,
queries which do not satisfy the access control re-
quirements).

Since GUPSte" does not store any data, GUPSter
does not require a heavy duty database. GUPSter
needs to rewrite queries using coverage and access
control information. By putting these function at
the level of GUPSY" we can keep the data stores
as is (except for the GUP adapter on top of any
data store) and expect very little overhead because
of GUPSter7,

The use of multiple distributed query patterns
(e.g., chaining, referral, recruiting) will permit min-
imizing the transport cost of result information.

The Napster analogy can give us some useful in-
sights about scalability and performance. At its
peak, Napster had more than 50m users with more
than a few millions connected at the same time.

6 Related Work

Profile Management efforts

There is a lot of on-going efforts in the area of user
profile management. Both Sun (pushing for Liberty
Alliance [2]) and Microsoft (pushing for Passport
aka TrustBridge aka MyServices aka Hailstorm) are
fighting over the next standard for network identity.
Both initiatives are currently focusing more on the
authentication aspect (single sign-on) than on the
issue of data management. Liberty Alliance — as
of this writing — has not proposed any data model
and schema for user profile information. Microsoft’s
user profile only consists of the traditional user in-
formation stored by an ISP.

A few years back, the DEN initiative [10] pro-
posed a suite of schemas to describe network com-
ponents and devices. Netscape roaming profiles are
a direct extension of those.

W3C Composite Capability /Preference Profiles
(CC/PP) [27] initiative started in 1999 aims at cre-
ating “a general, yet extensible framework for de-
scribing user preferences and device capabilities”.

7The GUPSTer architecture does not preclude network
components from communicating with each other the way
they used to. For instance, the presence component can re-
trieve location information from the HLR through GUPSter
or directly from the HLR.



The framework is based on RDF but does not seem
to have received much support so far.

LDAP-based approaches

When deciding on a representation/transport rep-
resentation for GUPster, XML and LDAP were nat-
ural contenders. LDAP has long been used for stor-
ing profile data and standard objectclasses exist for
detailed user profiles. Furthermore, DEN [10] pro-
posed even more detailed extensions.

Advantage of LDAP:

e LDAP is built for extensibility. Objects are
modeled with ”aspects” and can always im-
plement a new objectclass (and hence a set of
fields). XML would require power-sets of ba-
sic types to get similar flexibility — and way
to migrate objects/interfaces from one type to
another to boot.

e LDAP already defines a number of standard-
ized objectclasses which are well-understood
and used by many.

e LDAP’s hierarchical structure makes LDAP di-
rectories very easy to scale — it is straightfor-
ward to move arbitrary sub-trees to different
servers.

Advantages of XML:

e XML data can have arbitrary structure. LDAP
objects are very simple (and flat): each entry
in the LDAP tree is a set of name/value pairs.
Each of the values can be set valued, but only
for atomic types.

e XML comes with more sophisticated query lan-
guages. The LDAP query language is very lim-
ited and can only return sets of single objects.

e LDAP does not offer any typing mechanisms.
Typing is not used so much for sanity checking
input as for deciding which comparison func-
tion to use (e.g., if a field is a phone number
type, then 908-582-4393 and (908) 582-4393
should compare as equal despite their different
representation).

e XML is being enriched by new Emerging stan-
dards. The fact that XML Schema supports
annotations, and the proposed Schema Ad-
junct Framework [26], can provide a foundation
for building up a profile management frame-
work and associated tools.

16

We picked XML not just because it was a re-
quirement from GUP). We also plan to leverage the
LDAP/DEN schemas (translating them into XML
schemas) in developing GUPSt" profiles and to pro-
vide tools to wrap LDAP sites.

Netscape Roaming profiles illustrate nicely the
limitations of the LDAP approach. Address book,
bookmarks and calendar are best described as
nested structures, which are hard to capture in
the LDAP data model. The workaround used by
Netscape is to create new LDAP objectclasses that
store the information as binary objects. From the
client point of view, the objectclass is just a con-
tainer for the information.

The advantage of this approach is simplicity and
and extensisbility. For instance, I can store my MP3
play list in my roaming profile: this is a binary ob-
ject with its own format and LDAP does not need
to know anything about it.

This opaque storage has two major drawbacks.
First these opaque objects can only be accessed (re-
trieved or updated) as a whole. Second, it is not
possible to combine information from two separate
objects (e.g., combining calendar information with
address book information to find the phone number
of the people I am having a meeting with) because
they don’t share the same data model. XML puts
all the objects on the same ground (they all share
the same data model).

Personalization through policies

Personalization of converged services requires more
than providing simple ways to input and access pro-
file data; it requires the ability to specify and en-
force a broad range of preferences.

Technology for storing and sharing preferences
and their associated policies can build on the GUP-
ster framework described in this paper. But con-
siderable research is still needed in terms of how to
provision and process preferences. Some user pref-
erences are rather simple, e.g., that a user prefers to
use one credit card for book purchases and another
for travel-related expenses, and can easily be cap-
tured (and shared) using GUPster. But other pref-
erences may be quite elaborate, e.g., about when
and to whom a user’s presence information should
be revealed, or about whether and how voice com-
munication should be established as in the selective
reach me example.



Standards bodies (e.g., Parlay policy manage-
ment API [15], OPES [18]) and research activities
are developing approaches to support the specifica-
tion and enforcement of such elaborate preferences,
typically through the use of rules engines. A variety
of rules semantics might be used for different ap-
plication areas, including systems with no chaining
and systems that support production system style
semantics [17].

XML integration

A lot of work has been done in the domain of XML
data integration.

Silkroute [13, 14] enables the applications to
specify virtual XML views over a relational
database, and allows these views to be queried us-
ing XQuery. The IBM Xperanto [9, 23] project and
the Enosys XML Integration Platform [21, 1] fur-
ther allow the application to define and query XML
views on data spanning multiple data sources.

As mentioned earlier (Section 2.3), query-
oriented data integration of profile data is simpler
because profile queries typically do not involve joins.
As such, with respect to querying, these systems
seem to offer more than GUPSt®". However, query-
ing is just one aspect of data integration as sup-
ported in GUPSte": apart from being queried, the
data across the different data sources in GUPSter
needs to be updated (provisioned) in an integrated
manner. None of the systems mentioned above han-
dles integrated updates. Furthermore, GUPSt®" also
handles data placement (including caching) and rec-
onciliation aspects (see Section 2.3) that are not ad-
dressed in any prior framework to the best of our
knowledge.

The notion of coverage in GUPSte" requires some
algorithms to decide query containment of XPath
expressions (or subset of XPath), as studied in [11].
Some recent work on keys for XML [7] can also be
applied to define coverage. New operators for merg-
ing XML components are also relevant (like Deep
Union [8] or Merge [25]).

Security and access control

There has been a lot of work on security and access
control in general. For XML, we already mention
the emerging XACML proposal [20] and some of

17

its limitations. XACML has a very restricted no-
tion of request context. In GUPS®  the quality of
the privacy shield will depend on the context in-
formation the user can use to define her require-
ments. Moreover, XACML policies are expressed
using some simple rules (no forward chaining) which
are not suitable for complex access control policies.
Offering an expressive framework with good enough
performance is clearly a challenge. Another key is-
sue is the provisioning interface that end users will
use in order to express their preferences.

An elegant solution for conditional access to
XML (based on encryption) data has been pre-
sented in [19]. Some efficient algorithms for XML
access control have been proposed in [31].

In any case, GUPSt®" will have to be compliant
with whatever standard gets accepted for network
identity (e.g., Liberty Alliance [2]).

7 Conclusion

This paper identifies a new and challenging direc-
tion in data management, namely to support easy
(but controlled) access and sharing of profile data in
support of so-called converged services. These ser-
vices often involve real-time, interactive communi-
cation between a user and other users and/or multi-
ple network-hosted applications, and the associated
profile data is typically spread across multiple net-
works and organizations. Additional aspects and
requirements in this application area include the ex-
pectation that a single data schema will emerge for
(most) profile data, that privacy and access controls
are highly relevant, and the current lack of clarity
on the business models for managing profile data
will be resolved. In addition to describing these di-
rections in general terms, this paper describes the
key kinds of profile data that need to be accessed
in support of converged services, and also how and
where that data is currently stored in the various
networks.

The paper has proposed a high-level framework
for supporting access and sharing of profile data,
which satisfies the requirements agreed upon to date
by the 3GPP GUP standards body, and that also
follows the spirit of the Liberty Alliance consor-
tium. This GUPSt®" framework is fundamentally a
combination of two things: the federated database
paradigm and a peer-to-peer, Napster-inspired ap-



proach for organizing meta-data information. The
fundamental technology challenges of GUPSt" are
how to manage and control access to profile meta-
data and the associated data, and how to pro-
vide very efficient, scalable, and reliable support for
sharing of the profile data.

While the GUPSt®" proposal provides a sound ba-
sis for developing technologies for sharing profile
data in support of converged services, it raises many
challenges. We mention three of the most funda-
mental challenges here.

The core challenge is to continue work on meta-
data management itself — what is the right concep-
tual model for meta-data (in the context of manag-
ing profile data), what are the efficient ways to store
and access meta-data, what integrity constraints are
relevant and how can they be enforced, is XPath
sufficient for expressing the partitioning of meta-
data and/or data that will be managed by dis-
parate organizations, how should XACML [20] be
adapted or extended, how should the Schema Ad-
junct Framework [26] be applied to capture these as-
pects, and what is a systematic framework for sup-
porting the extension of the global profile schema
(for both local and global extensions)?

A second challenge concerns efficient, scalable,
reliable implementation. Although we have pre-
sented some approaches in this direction, the area
requires much more detailed consideration, includ-
ing an analysis of performance requirements, the
development of testbeds and benchmarks, and ul-
timately the development of self-adapting imple-
mentations for data access, transformation, distri-
bution, caching, etc.

The third core challenge involves data prove-
nance [8], that is, the tracking of where data (and
meta-data) have come from, and where they have
been used. In e-commerce, when a user buys some-
thing, she gives her credit card number and the mer-
chant gives a confirmation number for that specific
purchase. The user trusts that the merchant won’t
use the credit card number beyond the purchases
that the user authorizes. This illustrates just one
example of the many kinds of tracking mechanisms
that will be needed around access to profile data and
meta-data. A special case of the data provenance
challenge, in a different direction, concerns man-
agement of overlapping sets of profile data, e.g., a
user’s personal and enterprise address books might
be held by different organizations but hold over-

18

lapping data. What are systematic ways to sup-
port data reconciliation, to identify a single data
source that holds all the data needed for a specific
application, and to avoid distribution of data from
one source that violates access controls given for
another source?

Acknowledgements: the authors would like to
thank Vinod Anupam, Bharat Kumar and Prasan
Roy for comments and discussions about ideas pre-
sented in this paper.



References

[1]
2]
(3]
[4]
[5]

[6]
[7]

(8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Enosys. http://www.enosysmarkets.com/.
Liberty Alliance. http://www.projectliberty.org.
Napster. http://www.napster.com.

SyncML. http://www.syncml.org.

Universal Description, Discovery and Integration
(UDDI) project. http://www.uddi.org.

3GPP. Generic Profile,
http://www.3gpp.org.

User 2001.

Peter Buneman, Susan Davidson, Wenfei Fan,
Carmem Hara, and Wang-Chiew Tan. Keys for
XML. In WWW10, May 2001.

Peter Buneman, Alin Deutsch, and Wang-Chiew
Tan. A deterministic model for semistruc-
tured data. In Workshop on Query Pro-
cessing for Semistructured Data and Non-
Standard Data Formats, 1998. Available from
http://db.cis.upenn.edu/DL/icdt.ps.gz.

Michael J. Carey, Jerry Kiernan, Jayavel Shan-
mugasundaram, Eugene J. Shekita, and Subbu N.
Subramanian. XPERANTO: Middleware for pub-
lishing object-relational data as XML documents.
In VLDB 2000, pages 646-648, 2000.

DEN home page,
http://www.dmtf.org/spec/denh.html.

2002.

Alin Deutsch and Val Tannen. Containment and
Integrity Constraints for XPath Fragments. In
KRDB 2001, 2001.

Kazutaka Murakami et. al. Global Roaming and
Personal Mobility with COPS architecture in Su-
perHLR. Submitted for publication.

M. F. Fernandez, W.-C. Tan, and D. Su-
ciu. “SilkRoute: Trading between Relations and
XML”. In Int’l World Wide Web Conf. (WWW),
Amsterdam, Netherlands, May 2000.

Mary Fernandez, Atsuyuki Morishima, Dan Suciu,
and WangChiew Tan. Publishing Relational Data
in XML: the SilkRoute Approach. IEEE Data En-
gineering Bulletin, 24(2), 2001.

The Parlay Group.
agement Specification,

Parlay 3.0 Policy Man-
2002. Available from

18]

[19]

[20]

[21]

[22]

(23]

[24]

25]

[26]

(27]

28]
[29]

[30]

31]

IETF. Open Pluggable Edge Services (OPES).
http://www.ietf-opes.org.

Gerome Miklau and Dan Suciu. Cryptographically
Enforced Conditional Access for XML. In Proceed-
ings of WebDB, 2002.

OASIS. eXtensible Access Control Markup
Language. Available from http://www.oasis-
open.org/committees/xacml/.

Yannis Papakonstantinou and Vasilis Vassalos. Ar-
chitecture and Implementation of an XQuery-based
Information Integration Platform. IEEE Data En-
gineering Bulletin, 25(1):18-26, 2002.

Arnaud Sahuguet. ubQL: a Distributed Query Lan-
guage to Program Distributed Query Systems. PhD
thesis, University of Pennsylvania, Department of
Computer and Information Science, 2002.

Jayavel Shanmugasundaram, Jerry Kiernan, Eu-
gene J. Shekita, and Catalina Fanand John Fun-
derburk. Querying XML Views of Relational Data.
In VLDB, 2001.

Amit P. Sheth. Federated database systems
for managing distributed, heterogeneous, and au-
tonomous databases. In Guy M. Lohman, Amilcar
Sernadas, and Rafael Camps, editors, VLDB, page
489, 1991.

Kristin Tufte and David Maier. Aggregation and
Accumulation of XML Data. IEEFE Data Engineer-
ing Bulletin, 24(2):34-39, 2001.

Scott Vorthmann and Lee Buck. Schema Adjunct

Framework. Draft Specification 24 February 2000,
Feb 2000.

W3C. Composite Capability /Preference Pro-
files (CC/PP). http://www.w3.org/TR/NOTE-
CCPP/.

W3C. XML Path Language (XPath). Available
from http://www.w3.org/ TR /xpath.

Gio Wiederhold. Mediators in the architecture of
future information systems. IEEE Computer, 1992.

Joe Wilcox. Passport required—
not appealing. CNET, April 2002.
http://news.com.com/2100-1001-884730.html.

Ting Yu, Divesh Srivastava, Laks V. S. Laksh-
manan, and H. V. Jagadish. Compressed Acces-

Survey:

http:/ /www.parlay.org/docs/Spec3_ParlayPolicyManagementioidityn dfiagt HFidRent Access Control for XML. In

Dennis Heimbigner and Dennis McLeod. A fed-
erated architecture for information management.
TOIS, 1985.

Richard Hull, Bharat Kumar, Arnaud Sahuguet,
and Ming Xiong. Have It Your Way: Personal-
ization of Network-Hosted Services. In Advances
in Databases, 19th British National Conference on
Databases, 2002.

19

VLDB, 2002.



