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Abstract:

A primary tool that consumers have for comparative shopping are shopbots, which is short for
shopping robots. These shopbots automatically search a large number of vendors for price and availability.
However, the vast majority of Internet shoppers do not use them. One explanation for this low usage rate is
the poor design of many shopbots. Typically the shopbot searches a predefined set of vendors and reports
all results. This can result in time consuming searches that provide redundant or dominated alternatives.
Our research demonstrates analytically how shopbot designs can be improved by developing a utility model
for consumer purchases. This utility model considers the intrinsic value of the product and its attributes, the
disutility from waiting, and the cognitive costs associated with evaluating the offers retrieved. We focus on
the operational decisions made by the shopbot: which stores to search, how long to wait, and which offers to
present to the user. To illustrate our model we calibrate the model to price and response time data collected
at online bookstores over a six-month period. Using prior expectations about price and response time can
substantially increase the utility consumers receive from using shopbots. Specifically, we demonstrate how
shopbots can search more intelligently and increase consumer utility by selectively presenting results.

Keywords: Computer agents, utility theory, informational retrieval, stochastic modeling



1 Introduction

A primary tool that consumers have for comparison shopping on the Internet is comparison-shopping
engines, also known as shopping robots or shopbots. These shopbots automatically search a large number of
vendors for price and availability. Given the wide degree of price variation for consumer products on the
Internet, comparison shopping can provide real benefits (Hann, Hitt, and Clemens 2000; Brynjolfsson and Smith
2000; Clay, Krishnan, and Wolff 2001). For example, suppose a consumer wishes to purchase the novel Bear and
the Dragon by Tom Clancy. A visit to dealtime.com during October 2000 resulted in 57 offers that range in price
from $16.45 to $40.22 after a delay of about 30 seconds.

Despite their apparent usefulness, most consumers continue to search in the traditional way, e.g., visiting
a single store or selected sample of stores and making comparisons on their own. Media Metrix reports that
during July 2000 less than 4% of Internet users used a shopbot, while over 67% visited an online retailer (28%
visited an online bookstore). An obvious explanation is that consumers are simply not aware of shopbots, which
could be rectified through increased advertising. Another explanation which forms the focus of our research is
that consumers may prefer the traditional shopping process over shopbots. In other words simply visiting your
favorite store like Amazon is better than using a shopbot even though the shopbot may include a search to
Amazon. To an economist this would imply that the utility from a traditional shopping process exceeds the
utility generated by a shopbot.

To explore this possibility we develop an analytical model of consumer utility to weigh the expected gains
of search (e.g., lower prices or higher utility) against the costs (e.g., waiting time for the shopbot to respond and
cognitive effort required to compare alternatives). Using this model, the shopbot can make the following
operational decisions that influence these benefits and costs: which stores to query for offers, how long to wait
for these stores to respond, and which items to report to a user. This benefit-cost framework allows us to
evaluate the utility of the traditional shopping process, current shopbot design, and optimal shopbot design. We
show that the traditional shopping process may be preferred by consumers over current shopbots because they

are too slow or present too many alternatives relative to the expected gains of search. More importantly, we



show how the shopbot’s operational decisions impacts consumer utility and consider the implications for
improved shopbot design.

Expectations about prices are an important element in our improved shopbot design. The current
generation of shopbots are continually retrieving information about prices, yet never learn about the dispersion
of prices from these searches. For example, Amazon may have a high probability of being cheap for bestsellers,
but Fatbrain may have a high probability of being cheaper for computer books. We improve a shopbot’s
decision about where to search by incorporating prior expectations about prices. Using data collected from 28
stores between August 1999 and January 2000, we find that shopbots can predict prices with a high degree of
accuracy. These predictions can be used to select which stores to query.

In summary, our model shows that simply searching all stores and presenting consumers an ordered list
of all vendors is a poor design. Shopbots can be dramatically improved by incorporating knowledge about how
consumers make judgements and the value they attach to price search. This shows that a utility based approach
to shopbot design has merit. In §2 we discuss the online shopping process for books and the shopbot’s
operational decisions. {3 develops an analytical model of optimal shopbot design that incorporates a consumer
utility model to balance tradeoffs between attributes like price, delivery, and quality against waiting time. In {4
we develop statistical models to predict price and describe response time to retrieve offers from online
bookstores using data collected over a six-month period at online bookstores. §5 presents the results of a
simulation analysis that demonstrates the gains from this new type of shopbot compared with current shopbot
designs. The impact of these results on profitability for the shopbot is discussed in §6. We conclude the paper

in §7 with a discussion of our findings and directions for future research.

2 Operational Decisions in Shopbot Design

The typical shopping process for a consumer begins with a consumer identifying one or more books that
she is interested in purchasing. (In this paper we will focus on the purchase of books since it is the most widely

purchased item on the Internet, although our technique is applicable to travel and other consumer goods as well.)



Identification of the book may happen through a book review or by browsing an online bookstore, physical
bookstore, a shopbot, or a mix of the above approaches. Evidence suggests that many people do not engage
in search. In fact the vast majority of online bookstore consumers simply visit a single bookstore (Johnson et
al 2000D).

Cutrently shopbots quety all stores at the time a request is made and report all results to consumers'.
Query time can be substantial, with the modal time for pricescan and dealpilot being about 45 seconds. The tails
of the distribution are fat, especially for dealpilot which times out at 3 minutes in 10 percent of the searches. In
comparison, individual stores respond more rapidly, with modal response times of 2 seconds, but also have the
potential for slow response. Our conjecture is that many consumers may choose to go directly to an online
bookstore and avoid a shopbot because they are impatient. Usability research shows that delays of more than
10 seconds result in a loss of user attention (Nielsen 2000, pg. 44). Instead of querying all stores, shopbots could
use prior expectations about prices to identify stores that are most likely to have low prices or high utility. More
sophisticated shopbots could reduce both the average and the tails of their distribution by reducing the number
of queries or interrupting searches, making shopbots more attractive to consumers.

An additional problem with current shopbot design is the number of alternatives that are presented.
Every additional alternative presented will force the user to expend cognitive effort. Given that consumers are
cognitive misers, additional time spent on cognitive activity is more taxing than simply waiting. One suggestion
would be to show consumers the cheapest offer. However, it is unlikely that the shopbot could be so confident
since there is a random component to utility. Nor is the best offer synonymous with the cheapest offer, since
other attributes such as delivery and the store’s identity may effect a consumer’s utility. We propose that
shopbots could sort the retrieved offers by utility and offer a consumer fewer but more relevant choices by

eliminating unlikely alternatives. Fewer alternatives reduce the cognitive burden to the consumer, however this

1. Some shopbots may have direct access to price information from stores due to special marketing
agreements. In these circumstances query time may be substantially lessened since it requires a lookup in a
local database as opposed to querying a store and appropriately parsing the HTML document that is
returned.
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reduction also comes at an expense. The utility of the offer set necessarily declines with the number of options.

For our purposes we assume that our customer is interested in searching using a shopbot. A shopbot
presents the consumer with choices such as location (country), state (for sales tax purposes), and currency. Once
the consumer makes her choices and initiates the search, the shopbot queries all of the bookstores in its search
set and tabulates the information from stores that respond within a specified period. The shopbot then presents
the consumer with prices and shipping options ranked by total price. Shopbots may filter these stores for
availability and add information about the online bookstores (e.g., MySimon.com also provides Gomez ratings).
Note that if a consumer prefers that the data be ranked by some other criteria, she can re-rank it based on other

data fields such as unit price, store name, delivery type, and so forth.

Predict prices
at each store

Stop retrieval
process

Previous
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Determine
l/ which offers
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selected
offers
Begin
retrieval
threads for
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Figure 1. Flow-diagram illustrating the operational decision process for a
shopbot.

Figure 1 illustrates the decision framework we assume for the shopbot’s operational decision. First, the

shopbot is given the book to search. Second, the shopbot makes predictions about the price and response time



at each store it will consider querying. These prior predictions can be used to determine which stores to search
and how long to wait for a response. We assume that only realized offers (i.e., those offers retrieved from a
store) can be presented to consumers. This forces shopbots to actively search and not rely on prior
expectations”. Finally, once the process threads’ that search the stores are started, the shopbot must decide
whether to wait for all threads to finish their retrieval or whether to prematurely stop the retrieval process. Once
all offers are collected, the shopbot decides which of these offers to present to the customer. Separating the

presentation and query decisions allows the shopbot to respond to poor initial predictions.

3 A Utility Model of Consumer Interaction with a Shopbot

In this section we formalize the operational decisions made by the shopbot that were introduced in the
last section. We begin in §3.1 by presenting a random utility model which allows us to quantify the value of a
set of offers and balance this value against the cognitive effort necessary to compare this set. A model of the
shopbot decision process is given in §3.2. The optimal shopbot design is considered in §3.3 and §3.4.

We assume that there is a universe of .S stores that can be queried by the shopbot. The shopbot must
choose which stores to query and how many seconds () to allow the query to run. The decision of which stores
to query (@) is encoded as an Sx1 vector of binary decision variables, where =1 if the store is to be queried and
g~0 otherwise. The time it takes for the /th store to respond is assumed to be a random variate T; and the
observed value is #. The corresponding Sx1 vector of observed response times is £ The Sx1 vector rrecords
whether the store responds to the query within 7 seconds, that is =1 if </ and =0 otherwise. Notice that r
is a random variate that is not chosen by the shopbot directly, but is a function of realized retrieval times (#) and

the shopbot’s choice of gand /. For example, suppose the /th alternative has been queried, =1, if the realized

2. This assumption could be relaxed so that expected offers could be shown to the consumer. However, this
adds an additional layer of complexity since the consumer must now evaluate the probability that an offer will
be available.

3. A process thread refers to a task within a program that can be run independently from the main body of
the program. Most operating systems allow multiple threads to be run at the same time. In our shopbot
example the query for each store would be launched as a separate thread.
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time is less than the time to cancel all threads, #<7¥, then the offer will be retrieved, =1, otherwise even though
the store was queried its offer will not be retrieved, 7=0.

Once this query is completed the shopbot decides which offers to present to the customer. We define
the vector p to represent which offers to present, where p,=1 if the offer is presented to the consumer and p=0
otherwise. The total number of stores queried, stores retrieved, and offers presented equal {, R, and P,
respectively. The sum of the vector elements yield the number of chosen items, P=Yp, 0=Y g, and R=) ..
Notice the following inequality holds P<R<(Q<S. We assume that only those stores that are queried can be
retrieved, and only those offers that are retrieved can be offered. This relationship can be represented by the
inequality p<r<q, which is defined in terms of the element-wise inequalities, 0<p;<7,<g,<1. The requirement that
only retrieved offers are presented reflects current shopbot design, but could be relaxed in future research to

allow predicted offers to be reported.

3.1 A Random Utility Model

The utility from /th store is a random variate, U, and U={U,, U,, ..., Us}. We argue that the consumer
will choose only one item within the set, and therefore the utility from a set of choices is equal to the utility from
the best alternative or the maximum of the set. We define the operator U<p> to denote the set comprised of
the elements of the set Uthat correspond with those elements in p that equal one. Additionally, we define the
operator <p> to denote the set of the indices that correspond to the non-zero elements of p. For example, if
p=[11001] then «<p>={1, 2, 5} and U<p>={U,, U,, Us}.

The utility of the /th offer is modeled (U) as the sum of the utility derived directly from the product ()
and the disutility associated with the waiting time for the online stores to respond to the shopbot’s query (W),
the overhead of launching Q) threads on the shopbot, and the cognitive effort (C) associated with evaluating the
set of alternatives:

U=U,-E&W- o~ AC. (1)

Since the latter three terms decrease utility, we assume &, w, A>0. Additionally, these disutility terms ate not



subscripted by 7 since they are identical for all items offered. They are a function of the set of offers queried and
presented. We consider the construction of each of these variables below.
Product utility.: We assume that product utility (U) is the sum of a component due to a linear function

of the attributes of the product (U) and a stochastic component (€):

U, = U,+ €, where U, = Bidi s 2

1

WSS

J

and B, denotes the weight and a; denotes the value of the jth attribute of the /th product. For example, in our
application to bookstores the attributes of a book are price, delivery, tax, shipping time, and store name.

This compensatory utility model allows increases in one attribute to offset the decrease associated with
another attribute versus a non-compensatory approach that assumes consumers have rigid thresholds or
reservation prices. A primary benefit of the compensatory approach is that it can better capture tradeoffs that
consumers make. For example, the increased price of a book at Amazon may be offset by their guarantee of a
shorter delivery time.

The stochastic component is due to unobservable factors or random evaluation error by the consumer
and represents the fact that we cannot predict utility with certainty. We assume that these €; are independently
and identically distributed and follow an extreme value distribution with a zero location parameter and a scale

parameter of 0. The cumulative distribution of U=Ue, is:

- (x-#)/0
) .

Pr{U,<x] = expi-e 3)

The mean and variance are E[U]=U+y0 and Var[U]=n?0/6, where y is Euler’s constant (i.e., y~.57722). The
choice of the extreme value distribution is motivated by its extensive use in choice models (McFadden 1980)*.
Usually the scaling parameter 0 is set to unity to address the identification of the parameter estimates in the utility

function when a constant is included.

4. The IIA property of the choice process implied by extreme value distribution is a reasonable one in this
instance, since all the products in the set are considered to be close, if not perfect, substitutes. The addition
of another similar item in this set will reduce the choice probability of the other alternatives in the set.
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Waiting Time: The response time (W) is the time associated with retrieving the set of offers. This is the
time for the slowest store to respond, max(7< g>), unless this time exceeds the interrupt time set by the shopbot
when the retrieval threads are launched, 7, in which case any remaining threads will be ignored. Hence, response
time (W) is defined as

W = min(#* ,max(7<g>)) . @

Server Overhead: We assume that the time for the shopbot’s server to start and service the threads that
handle the HT'TP query to an online store is proportional to the number of stores queried (¢)) and is measured
by w. The term w{) measures the disutility that consumers experience as the result of the total delay in response
time from launching Q threads. It captures only the opportunity costs borne by the consumer and does not
represent the shopbot’s computational cost of the search which is irrelevant to the consumer. For most
situations one would expect that w would be insignificant, since the time to start a thread is on the order of a few
milliseconds, hence w~0. However, when the system is above its operating capacity during peak periods there
could be a measurable delay for the consumer (e.g., perhaps a second or more). An alternative interpretation of
w is delay due to the load on the shopbot’s server. The inclusion of ®>0 prevents the situation in which the
optimal shopbot design would be for the shopbot to launch a query to every store that is known. Under this
solution the shopbot server’s would always be overutilized and response seriously degraded.

Cognitive Costs: A metric for evaluating the cognitive costs (C) associated with comparing P alternatives
each with 1 attributes was proposed by Shugan (1980):

C=A-HEP-1). ©)
The motivation for this formulation is that cognitive costs are proportional to the number of alternative and

attribute pairs. For example, a set of three alternatives with four attributes will take six comparisons.

3.2 The Shopbot’s Decision Problem
The shopbot’s decision problem is to maximize utility in a two step process. First, the shopbot needs

to make decisions about which stores to query (g) and how long to wait (/) in order to maximize the expected



utility of the offers (p) that it expects to make to a consumer:

max FE max(U<p>) .
g

©)
At this stage the shopbot does not know prices nor utility with certainty, instead it must predict utility and its
components like price, delivery time, etc. using past information. Additionally, the shopbot does not need to
decide which stores it will present since this decision can be made after the offers are retrieved, but it does need
to predict which p is likely to be used.

Second, after # seconds have elapsed and the shopbot has actually retrieved a set of offers (#) it needs
to make a decision about which offers to present (p) to the consumer:

max E max (U<p>) | [_]<1->] . %
P

Notice that at this point the shopbot knows the portion of utility due to the product attributes (U) but not the
portion due to the evaluation error (€)). As an aid to the reader the variables and parameters used in this paper
are listed in Table 1.

This problem presents a large decision space in which the shopbot can operate out of which current
shopbot design considers only one particular combination. In our notation current shopbot design can be
represented as a query to all stores (g=1) where 1=[1 1 ... 1]’, interrupt the search if it is not completed within
30 seconds (#=30), and present all retrieved offers (p=1). However, there are 2° possible combinations that the
shopbot could consider for query. In addition for any proposed retrieval set there are many combinations from
which to show consumers. In total, there are ;;1 ;1 ( z') Ll) possible sets that the shopbot could offer the

=1 j=
consumer. A universe of 10 stores yields 58,025 combinations, while a universe of 30 stores yields more than
205 trillion combinations. In the next two subsections we consider the solution to this problem. Since this is

a two step optimization problem we begin with the final stage decision and then consider the initial decision

assuming the final stage decision will be optimized.



Notation

Description

)
A
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Exogenously determined variables:

Number of stores that may be queried
Number of attributes that a product possess
Attribute of the jth product at the /th store

Shopbot decision variables:

Total number of queries to be started, retrievals completed, and presentations to
show the consumer, respectively

S x 1 vectors of indicator values to determine which sites to quety, retrievals
completed, and presentations to show the consumer, respectively

Time for the shopbot server to wait before terminating the O query threads

Random variables:

Time to retrieve set of R offers

S x 1 random vector of random and realized retrieval times for each store
Random and realized time associated with retrieving an offer from the th store

S x 1 vector of random utility associated with each alternative inclusive of all costs
Total random utility associated of the sth alternative inclusive of all costs

Utility derived directly from the product, not including waiting time or other costs
Component of utility determined by product attributes

Random utility error of the zth alternative

Utility parameters:
Utility associated with the jth attribute of the /th product

Disutility from waiting one second
Disutility from waiting due associated with shopbot server overhead from threads
Disutility associated with comparing an attribute pair

Distributional Parameters:

Scale parameter for extreme value distribution
Exponential parameter

Mean of logistic distribution

Scale parameter of logistic distribution

Table 1. A list of variables and their definitions.

3.3 Deciding which retrieved offers to present to the consumer

We begin by considering the shopbot’s decision at the final stage where the shopbot must decide which
offers to present to the consumer by choosing p, which implicitly defines P. At this stage the shopbot has
already decided which stores to query (this decision will be considered in §3.4) and retrieved a set of R offers (x).
Since the offers have been retrieved the product attributes (price, delivery cost, etc.) are known at this point,

hence the random variate representing utility, U,

2
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will take the observed value i, where /e<r>. There is still
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uncertainty associated with the random variates U, due to the consumer’s evaluation error €, Using the
definitions given in §3.1 the optimization problem that corresponds with this stage given in (7) can be written

as:

max E[max(U<p>)| U<r>] = E[ max(U<p>) - EW - wQ - A(A- )(P- 1)| U<e>] . ®)
P

This simplification uses the fact that the disutility terms for waiting time, server overhead, and cognitive costs
are functions of the set of alternatives retrieved, hence they can be extracted from the maximization function.
The expectation is computed conditional on the information set {U<r>, £, w, A, 0}, which is suppressed for
notational convenience throughout this subsection.

Clearly the best alternatives to present are those with the highest expected utilities. (Note this
simplification depends upon the i.i.d. assumption of €;) To find the set of p offerings that maximize the expected
utility of this set we order the retrieved offers by their expected utilities. The utilities of the alternatives in the
offer set is denoted as {@, ..., Ug prir)> Whete Gpp> Ty x> > Uy pyype This reduces our problem to a decision
about how many offers to present (P). Given P the elements of pare determined by the relation: p=1if =1 and
U> Uy . 1.q and =0 otherwise.

The properties of the extreme value distribution imply that the maximum variate, UZmax(UR:R, U n
vy Ugpirg), will also follow an extreme value distribution with location of Oln(exp{d/0}+exp{i

11/ 0} +Fexp{d p.1.x/0}) and scale of 0. Hence the expected utility of the offer set is:

_ P
E[max(U<p>) | P, U<r>] = Gln( v exp{;R_i”:R/e}] + 0y - EW- 00~ A(A- 1)(P-1). (9
i=1

The ordering of the items to include is determined by the sorted order of #;,1.x. To determine the
number of elements to include in this set, notice that the two terms that involve P, 0 In(} exp{ i ;1.,/0}) and
-A(A-1)(P-1), ate monotonically increasing and monotonically dectreasing in P, respectively. Therefore we can
tind the optimal value for P by first evaluating at P=1 and subsequently incrementing P until the expected utility

begins to decline. This yields the following stopping rule to determine the optimal value P
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E[max(U<p>)| P= P* + 1, U<r>] < E[max(U<p>)| P= P*, U<r>] =

CXP{;R—P*;R/G} . exp{},(A_ 1) } - 1. (10)

0

P*
_;1 EXPHR_ i Y e}

In other words, find the largest P such that the relative gain from adding this alternative exceeds the added
cognitive costs to the consumer of its evaluation. The vector of offers to present (p) is implicitly defined by
setting those elements that correspond with the indices of {&yy, ..., Ug p«r} to unity and zero otherwise.

A special case with identical offers: To proceed further we assume that all offers have the same value,
U ;+1.x= U Therefore the question is not which offers to present (since they are identical), but how many. Under
this assumption we can simplify (9) as:

E[max(U<p>)|P,u,=u] = u+ Oy + log(P), - E&W - wQ - A(A-1)(P-1) 11)
If we allow P to take non-integer values, we can differentiate (10) with respect to P and find the optimal value:

%k e
P tay (12)

Notice that the optimal set size incteases as cognitive costs dectease (A~0_) ot the variance (0) of utility increases.
Additionally, we can then show that (11) creates an upper bound of (9) by setting # to the maximum value, #.,
and that (12) bounds the solution in (10).

Example: 'To illustrate these relationships suppose the average book generates 10 utils with a standard
deviation of about 2 utils, i.e., #=9.1 and 0=1.6. Additionally, assume that a book has 4 attributes (brand, price,
shipping cost, and delivery time), i.e., A=4, and set £ and w to zero without loss of generality in this example.
This means P=1.6/3A. Suppose each additional unit of cognitive effort dectreases utility by .1 utils (A=.1). The
optimal number of offers to present to the customer is 5.3, or rounding our shopbot should present 5 books.
Doubling the effects associated with cognitive effort (A=.2) will reduce the set to P"=2.7 or about 3 books. Again
suppose A=.1 then the utility generated by offering five books (the optimal number) is 11.4. If the shopbot were

to present 20 books then utility would drop by 20%. In summary, naively presenting all offers retrieved is not
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optimal. Clearly, cognitive efforts are a crucial component in the design of a shopbot.

3.4 Deciding which stores to query and how long to wait for a response

At this initial stage the shopbot must decide which stores to query, g, and whether those queries should
continue until completion or whether they should be interrupted prematurely at time 7 as stated in (6). We
assume that the shopbot will make the optimal decision about which retrieved offers to present as discussed in
§3.3. Neither the retrieval times nor the offers are known as in the previous subsection, hence both are assumed
to be stochastic variates. The utility from the product attributes (price, delivery time, availability, etc.) is the
random variate U and not the observed value Z as in the previous subsection, where €< g>. We assume that
response time and utility are independent, hence discount stores will return responses as quickly as expensive
stores. Empirically this assumption will be justified by the discussion in §4. Formally we can make use of the

result from the previous section and rewrite (6) as follows:
E; max(U<p>) | = B E[max(U<p>)| U<>]| (13)

Equation (13) makes use of the following relation: E[X]=E[E[X| Y]].

The solution of the inner expectation was given in (9), and we will assume that pis chosen optimally by
sorting the retrieved values and using the first P, where P’ is a function U<r> as defined in (10). The outer
expectation requires integrating over the distribution of product utility and retrieval times and summing over all

possible permutations of retrieval sets weighted by their probability:

E E[max(U<p>)| U<r> 1=
P’ _ (14)
sy PAir] EOln y exp{U<t>R_,_+1:R/q - MA- (P -1)| |+ Oy - EE[W] - 0Q .
5 i=1 4 4

Where .7 denotes all possible 2¢ permutations of the query set, Pr[r denotes the probability that query set ris

retrieved, R, =Y 7, =£1 which is the number of retrievals made from query set , P, denotes a stochastic variate

13-



that represents the optimal number of offers to present given the retrieved set £, and U<r£>; ;. ., denotes the
R, ., ordered statistic from the set U<r> with R, elements. The expectation is computed conditional on the
information set {q, 7, €, w, A, 0, B}, which is suppressed for notational convenience throughout this subsection.

Additionally to avoid problems when the rare occurrence of no offers are retrieved, we assume that one
inferior offer is always available. In our bookstore example this will be a special order that is twice the list price
and takes six months to receive. As long as any offer is retrieved this offer is dominated and will not be
considered or presented.

The probability that any member of .7 is retrieved can be computed in the following manner. Consider
the probability that all items are retrieved, it equals Pr[f,;msf, f/-msf, vy Z,;[Q]sf], where 7[/] denotes the jth element
of «g>. The probability thatall items except the first one is retrieved is: Pe[#y,>7, <7, ..., ;5 </]. The remaining
elements can be computed in a similar manner. Notice that .7 has 2¢ members and its evaluation leads to a
computational problem due to the large number of combinations. A set of 10 stores yields 1,024 combinations

to evaluate, while 30 stores will lead to more than one billion combinations to evaluate. Before considering the

optimal solution to this problem we discuss distributional assumptions for waiting times and utility.

Waiting times are exponentially distributed

Equation (14) requires the computation of E[IV], to proceed further we assume that retrieval times
follow an exponential distribution and are independently and identically distributed. This assumption is
supported by our empirical analysis of §{4.2. The probability of observing a query to a selected store is denoted
by t=t()=Pr[T,<t¥=1-exp{-#*/(}. The expected time to obsetve a quetied store is E[T)]=( with vatiance
Var[T]=C". The expected time to observe the set of queries is E[max(7<¢g>)]=C ¥, 1/j whete j goes from 1 to
Q. For example, if the expected time to observe one store is 2 seconds, then the expected time to observe a set
of ten stores is 5.9 seconds. The density function of the maximum variate is Pt - []=0 ()% exp{-1/0)/C.
We can derive the expected value of W, which can alternatively be described as the maximum from a distribution

of exponential variates censored at 7
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E[W] = E[min(max(T<g>),#")] = IQT(ﬁQ'IeXP{‘ G/ Cdt + 1T (1-T¢T)D) (15)

If 7 < E[ max(e<g>) ] then E[W]=/. The probability of observing an individual member r from set .7 is:

PAr} = t™®(1- 192 ® where R = 7 (16)

Utility is logistically distributed

The expectation in (14) implicitly requires the integration of (9) over the distribution of U<r>. To
proceed further we make additional assumptions about the distribution of product utility. The natural choice is
to assume that the attributes, such as price, are normally distributed at each store, and therefore utility itself is
normally distributed. Our empirical analysis in §4.1 supports this assumption.

The problem is that the distribution of the order statistics from a normal distribution do not yield closed
form solutions. A reasonable approximation to the normal distribution is the logistic distribution’. If we assume
that the attribute component of utility is identically and independently logistically distributed across stores,

U~L(u,0° for /=1, 2, ..., S. The cumulative distribution function of U.is defined as:

1+ exp{— %u }I 1. (17)

The mean and variance of the logistic distribution are E[U]=p and Var[U]=0°1*/3. The mean of the maximum

Pr[ﬁisx] =

variate of a logistic distribution is E[max(Uy)] =o(Y(R)+y)+, where y(x)=I"(x)/I'(x). Balakrishnan (1992)
presents a full discussion of the properties of the logistic distribution.

We can now bound the component of the expectation in (14) that involves the logarithmic function:

5. The distribution of the logistic distribution has longer tails than the normal and is more closely
approximated by a Student-t distribution (Mudholkar and George 1978). Also notice that the variance of the
standard logistic is 1%/3, hence the variance parameter of the normal distribution should be scaled by n/.3
before comparing it the scale parameter of the logistic distribution. For a discussion of the approximation of
the normal and logistic distributions see David (1981, pp. 77-78).
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E Oln

p* - —
=1exp{UR_MR/e}] | 7|2 BEUpg | 7) = o®+v)+ b (18)

This lower bound can be derived by factoring Uy, and showing that the term in the logarithmic function always
exceeds unity. Intuitively, we are focusing on the “best” single product, if we could know the consumer’s choice

with certainty (0-0) then this inequality becomes an equality.

Solution

A general analytical solution to the maximization of expected utility given in (12) with respect to ) and
7 is not known. However, we can detive a reasonable approximation for certain cases. First, we consider the
case where response time is not interrupted, but all queries that are launched and allowed to execute until
completion. Second, we consider the more complex case where some queries may be prematurely interrupted
when their response time is longer than 7.

Time is bounded (¢ constraint is active): 1f we make the four following simplifications: 1) any uncompleted
query threads are interrupted at time 7, 2) P is replaced with the approximation defined in (12), 3) we use the
lower bound of expected utility from equation (18), and 4) we use 7 to approximate W, then the expected utility

in equation (14) yields:

2 : .
E| E[max(U<p>)|P", U<e>]|~ (}Q) ® - YW Y) * By

1\ J

+ (1- 9%, - (0-A(A4- 1)+ Oy~ & - w0 .

(19)

Where W, is the utility from the alternative when no offers are made, and we assume that p,<p. The assumption
that times and utility are 1.1.d. is critical in this simplification, since both the expected utility and the probability

the set is realized depend only upon the size of the set and not the stores selected. The optimal solution for 7

given () 1s:
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# = Cin [ 4 % (20)
19(- y+ 1+ Yo+ OY())

The solution for the optimal value of Q can be found by substituting (20) into (19) and enumerating the values
of 0 beginning with unity until the expected utility begins to decline.

Time is not bounded (' ~=): If we make the following three simplifications: 1) all query threads that are
launched are allowed to run to completion then t-1, 2) the value of P is approximated using (12), and 3) we

approximate E[W]=E[max(T},...,T,)]~(In(Q), then the expected utility found in (12) yields:

E[max(U<p>)] = E|01n - AA-1DP* -1+ 0y- ElnQ - 0@ . @D

p* _
——

Replacing the expectation of the logarithmic term in (21) using the lower bound in (18) and using the

approximation J(x)~In(x+.5) when x>2 yields the following solution:

-20E+ 20+ w+ \/8CE_,(D+ (20 - 20 + w)?

4w 22

o -

If either & or { are small relative to 0 and w<<g, then J'~0/w. In other words the number of sites to query is
directly proportional to the variance of utility, and inversely related to the waiting time associated with the

computational overhead of starting additional threads.

4 An Empirical Study of Online Book Prices, Store Response Times, and Utility

In this section and the next we consider a simulation of our shopbot model proposed in §3 to data
collected at 28 online book stores over the course of six months, August 1999 and January 2000. We analyze
the prices from a sample of over 600 books with unique ISBNs. The sample includes two types of books: New

York Times bestsellers (once they were listed we continued to collect prices regardless of their status on the list)
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and a random sample of books in print. Automated agents were constructed to collect data from two major
comparison shopping engines and some individual stores. Our agent collected information about unit price,
shipping cost, shipping time, and delivery time. We begin by formulating a predictive model of price in §4.1 using
this data, present an analysis of store response times in {4.2, discuss the part-worths of the utility function, the

disutility of waiting, and cognitive costs in §4.3. The simulation results of utility are presented in §5.
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Figure 2. Price changes at the three top online booksellers for a Fiction hardcover book during
August through November of 1999.

4.1 Predicting Prices

To illustrate typical price behavior for online bookstores we plot several selected stores in Figure 2. A
striking feature of the price series is the persistence of prices. In fact prices may remain at the same level for
several weeks. The average time between price changes in our dataset is about four weeks. A practical implication
is that the best guess of today’s price is yesterday’s price. Prices may change for no apparent reason or they may

respond to a change in the status of a book on the New York Times bestseller list or a price change at another
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store. Most stores respond aggressively to a change in the New York Times Bestseller list. If the book is added
to the bestseller list there is a high likelihood that prices will drop, and alternately if it drops off the list this may
lead to a price increase. However, these effects are not always automatic and there can be delays of several days
or weeks before any change results. Additionally, some stores, like buy.com, will respond to changes in prices
at another store with high likelihood, while amazon.com seems to act more like a price leader.

These facts taken together suggest that the shopbot can predict prices with a fair degree of precision.
The predictability of prices means that shopbots can leverage information from previous retrievals to improve
searches by selectively ignoring high priced stores (or stores with low expected utility). We propose a formal

statistical model to capture these stylized facts:

relprice | with probability p_
relprice ,, = ) , ) (23)
b, + &, refprice,, |+ Oy x, + €, otherwise

Wherte rejprice,,, denotes the price at store s for book & on day 7 relative to its list price (refprice,,=price,,/ listprice ).
We assume that list prices do not change through time and are known. Relative prices are used to enable direct
comparisons across stores and allow the observations to be pooled within bookstores. Notice that our model
consists of two components. One states that prices have some probability of changing on each day (p,). If prices
are changed, the magnitude of the price change is modeled as an autoregressive transfer function. Also, note that
we use the actual price of the product excluding shipping costs and tax. We separately analyzed shipping costs
and found them to be the same at a store regardless of the type of book or time the offer was made during our
sample. Additionally, we ignore tax. This allows us to simplify the predictive model of price. However, the model
could easily be extended to include these values.

Modeling time between price changes: The first component of our model in (23) concerns time between price
changes, where time is measured in days (which takes only integer values). Figure 3 that illustrates the days
between price changes at 1Bookstreet.com, which is representative of our dataset. The days between price

changes ranges between one and 168 days for this store. The median time for a price change to occuris 26.5 days.

Most price changes occur fairly infrequently, only one quarter of all prices changed again within the eight days
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Figure 3. Histogram of days between price changes at 1bookstreet.com. There are a total of 98 price
changes that occurred between August 1999 and January 2000 for 40 different books..

A natural suggestion would be to model these counts using a Poisson distribution. Most books in our
dataset have only one or two price changes, therefore we pool the data across books within a store. To allow for
heterogeneity across books within a store we assume that the Poisson parameter follows a gamma distribution
with parameters (y, 8). The & parameter is assumed to be constant for all books within a store, while the y
parameter is allowed to vary as a function of covariates, v, =exp{x,,’B,}. This allows us to predict the days to
a price change using other information like price changes at other stores or whether the book is on the bestseller

list. This assumption results in a negative binomial model for days between a price change (Hausman et al. 1984):

Ty, +» § )t _
P — (Vsbe sht) 1 S B
,{ ﬂ.fbt] 1'1( ijt) 11( no+ 1) 1+ 6 ( + ) (24>

shr

Where this probability defines the probability of a price change used in (23), #,, is the number of days between
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ptice changes. The expected number of days until a price change is exp{x,,'B,}/0 and the variance is

exp{x,, B} (1+8)/8
Days since ) o
change in Number of days since change in price at...
bestseller  1Book Barnes&
Store o Constant status Street Amazon Noble buy.com  Borders
1BookStreet 0.04 0.01 0.01 (0.01) 0.00 0.00 0.01
(0.01) (0.18) (0.01) (0.01) 0.00 0.00 0.00
Amazon 0.06 0.03 0.01 0.01 0.00 0.00 0.00
(0.01) (0.15) 0.00 0.00 0.00 0.00 0.00
BarnesandNoble 0.05 0.05 0.00 0.01 (0.01) 0.00 0.01
(0.01) (0.15) (0.01) 0.00 (0.01) 0.00 0.00
Buy.com 0.04 (0.16) 0.01 0.00 0.01 (0.01) 0.00
(0.01) (0.13) 0.00 0.00 0.00 0.00 0.00
Borders 0.03 0.02 0.00 0.00 0.00 0.00 0.00
(0.01) (0.15) (0.01) (0.01) (0.01) (0.01) 0.00

Table 2. Maximum Likelihood Estimates for time between price changes. Standard errors ate given in
parentheses below the estimates.

The maximum likelihood estimates of the parameters for the top five online stores are given in Table
2. Notice that days since a change in the bestseller status has a significantly positive impact for amazon and
buy.com. This implies that the longer it has been since the bestseller status has changed the less likely a price
change, in other words if a price change is to happen it will occur soon after a price change. For most stores the
timing of price changes do not appear to be significantly related to price changes at other stores.

New Price conditional on price change: We now consider the second component of the model that determines
the magnitude of a price change given that it has occurred:

refprice,, = O + e're{prz'cej’b’t_ Lt B'upbm + )»'zgppm + Wedownh , + Ydownp, + €, , €, ~ N(O,cf) (25)

whete uph, downh, upp, and downp are indicator variables that indicate, respectively, if the book is hardcover and
the book moved into bestseller list, if the book is hardcover and the book moved out of the bestseller list, if the
book is paperback and book moved into bestseller list, and if the book is paperback and the book moved out

of bestseller list.
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Store Constant Tag Price uph  downh upp uph
1book 0.24 0.07 -0.27 0.17 -0.26 -0.02
(0.05) (0.12) (0.13) (0.00) (0.07) (0.006)
Amazon 0.17 0.69 -0.45 0.23 -0.58 0.43
(0.04) (0.08) (0.03) (0.04) (0.03) (0.04)
Bnoble 0.43 -0.30 . -0.03 -0.23 0.19
(0.04) (0.10) . (0.05) (0.07) (0.05)
Borders 0.24 0.08 . 0.11 -0.30 0.32
(0.07) (0.10) . (0.11) (0.25) (0.10)
Buy 0.87 0.01 -0.82 -0.53 -0.74 -0.41
(0.29) (0.08) (1.54) (0.58) (1.03) (0.57)

Table 3. Estimates of the effects on the magnitude of price changes. Standatd etrors of the estimates ate given
in parentheses below the estimates.

For the most part when the book moves out of the bestseller list, the price increases, and when it moves
back onto the bestseller list the price declines. The magnitude of the effect is larger for hardcover than paperback
books. The overall fit of the models is moderate due to the fact that some price changes occur for inventory
management issues, periodic price revisions, or other unobserved factors.

Making Price Predictions: 'T'o predict price we can join the two conditional components together. Consider
the expectation of the one-step ahead, price forecast:

E[re{bn'cejb, 1 | relprice, | = P 1 reprice,, + (1 - Py D) (d) ot d)ﬂ relprice ,, + 61,, X1 (26)
This expectation is equal to the probability that a price change has occurred times the conditional expectation
plus the probability that a price change has occurred times the probability of no price change. The probability
of a price change can be computed from the negative binomial distribution given in (24). Additionally, if xis not
known then a forecast of x can be used in its place. Subsequent forecasts can be created in a similar manner by
recursively applying this formula. The eventual forecast model under stationarity, or in other words the forecast

when no information other than the list price is known follows the usual autoregressive relationship:

+ 8, E[x G
Elrelprice ] = m and  Varlrelprice ] =
1- ¢:7 1- ¢2

s1

(27)

To illustrate the forecast from this model consider the typical price prediction problem that a shopbot
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must solve. Suppose that the shopbot performs a weekly search of prices at Amazon on Friday. However, the
shopbot may also need to forecast prices during the remainder of the week. The price forecasts under this
scenario are illustrated in Figure 4. Notice that on Friday the price and forecast always match, and thereafter the
forecast shows a marked affinity for the last price. One mid-week price change is totally missed, while level
changes are picked up quickly. If the price change is due to a change in bestseller status then these price changes

can be predicted with some degree of confidence.
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Figure 4. Actual and forecasted price for a selected book at Amazon.

The accuracy of the price predictions depends on the frequency with which the shopbot chooses to
gather prices from the stores. The correlations between the actual and predicted price (standardized by its list
price) is given in Table 4. Notice if the shopbot has the price for the book from a search three days ago there is
a correlation of .99. Clearly, good price forecasts can be generated without having to query the store. As the
frequency of price sampling goes down the forecasts start to deteriorate. Although even with month old price
information there is a correlation of .82, which implies a shopbot should be able to make an educated guess about
the cheapest stores with even fairly old information. Decreasing the frequency of sampling lessens demands on

network traffic (and increased demands on an internal database to lookup past prices) but would also lessen the
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predictive accuracy. This tradeoff between accuracy and speed needs to be considered by a shopbot when

choosing an optimal frequency to gather prices.

Price Collection Frequency Cotrelation
Only once (Initial Time) 297
Once every 30 days .819
Once every 14 days 914
Once every 7 days 950
Once every 3 days .987
Once every day 1.000

Table 4. Correlation between actual and predicted prices for different frequencies of data collection.
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Figure 5. Seconds for Amazon.com to respond to a search request. This data was collected in response
to over 5,700 queries between April 2000 and July 2000 between midnight and 6am.

4.2 An Analysis of Store Response Times
Stores typically respond quickly to requests from a user (or shopbot). The time for Amazon’s server to
respond to 5,700 queries during April to July 2000 are given in Figure 5. For the most part responses are quick

with almost 80% of requests being retrieved in less than 2 seconds. However, at certain times network congestion
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or server overload can cause substantial delays or even no response. In fact in the remaining 20% of requests
Amazon.com could take up to 90 seconds to respond. Additionally, about 4% of requests are not returned within
a 180 second timeout period. The response times at BCY Bookloft and Barnesandnoble.com are similar.

To model response time we assume that they follow a gamma distribution with probability p and do not
respond with probability 1-p. An estimate of the probability of no response and the gamma parameters for three

major stores are given in Table 5.

Number of | Probability Gamma Parameters Moments
Store observations | of response | Location (&) [ Scale (0) Mean StdDev
BCY Bookloft 7,803 979 452 5.61 2.53 3.77
Amazon 5,739 960 775 3.47 2.69 3.05
BarnesandNoble 2,224 950 443 5.94 2.63 3.95

Table 5. Estimates of gamma distribution and probability of response for selected bookstores.

If we assume that retrieval times across stores are independent, then the distributional assumption allows
us to evaluate the time to retrieve not only a single store but at a set of stores. The time to retrieve a set of O
stores will be determined by the time for the slowest store to respond. The mean of the maximum response time
can be computed directly. To simplify these calculations we ignore the fact that some stores will not respond and
assume that response time is identically and identically distributed as a Gamma distribution with location and
scale parameters of .5 and 5 respectively. Therefore, the mean and standard deviation of a single response is 2.5
and 3.5 seconds respectively, which is similar to our sample in Table 5. The expected time for five stores to be
queried is 6.9 seconds, while a set of ten stores takes 9.5, and 30 stores would take more than 14 seconds. (These
numbers are sample estimates using a simulation with 100,000 draws.) Notice that as the number of stores
increases the mean goes up proportional to the logarithm. Therefore, a simple retrieval strategy of searching for
all stores may not be a good one since the benefits of retrieving an additional store needs to be balanced against

the expected benefits of retrieval.

4.3 Calibrating the Utility Model, Disutility of Waiting, and Cognitive Costs

In this subsection we consider the calibration of the parameters associated with our utility model. Our
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purpose is to choose reasonable values that will be used for illustrative purposes in a simulation study that will
be presented in §5. We do not claim that these settings are correct or representative of an average consumer.
They are chosen to present reasonable settings for evaluating the effects of different operational strategies on
consumer utility.

The parameters for the utility function measure the implicit tradeoffs consumers are willing to make
when evaluating a product. These parameters can be estimated directly from previous purchases at the shopbot
or through a conjoint task. We use the maximum likelihood estimates reported by Brynjolfson and Smith (2000).
They measured the utility associated with the following attributes about each book: total price, expected number
of days until delivery, and an indicator for brand if it is sold by one of the three large booksellers (Amazon,
Borders, and Barnes & Noble). Brynjolfsson and Smith (2000) use actual purchase data from a panel from over

20,000 unique visitors during late 1999.

Parameters Estimates
Price

Item Price -.194 (.001)
Shipping Cost -.368 (.002)
Expected days until delivery -.019 (.001)
Effect of branded retailers:

Amazon.com 477 (.020)
Barnesandnoble.com 177 (.023)
Borders.com .266 (.020)

Table 6. Parameter estimates from Brynjolfsson and Smith (2000) of a multinomial logit choice model for
consumer purchases at Dealpilot. The standard errors of the estimates are given in parentheses.

One method for interpreting these coefficients is to make relative comparisons. For example, these
estimates imply that for every additional day that it takes to have a book delivered the store needs to decrease
its price by $.098 (=-.019/-.194) to keep utility unchanged. To propetly compensate a consumet for an extra two
weeks in delivery time the store would need to decrease the price by about $1.37. Notice that consumers are
almost twice as sensitive to a dollar paid for shipping versus for the item price (this implies it is better to charge

higher prices and bundle shipping costs with the book price). Also, the value of Amazon’s brand name can be
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imputed from the model parameters to be $2.46 more (=.477/-.194) than the value of an less well known
bookstore. All three major booksellers show substantial brand equity.

Our model postulates a certain amount of disutility due to waiting one second (w), waiting for the
shopbot server to launch a thread due to system congestion (£), and the cognitive costs associated with making
comparisons in a final offer set (A). Unfortunately, the data from Brynjolfsson and Smith (2000) does not include
waiting times, nor do we have access to any data that would allow us to empirically answer this question.
However, previous studies of Internet behavior clearly demonstrate or hypothesize that there is disutility to
waiting. Konana et al. (2000) conjecture that there is a direct tradeoff between waiting time and costs. Dallaert
and Kahn (1999) show experimentally that waiting can negatively affect evaluations of web sites. Their results
also suggest that waiting is not purely a function of time but can be mediated by other factors. However, for
simplicity we have assumed that waiting is a simple tradeoff between time and dollars. Johnson et al. (2000a)
argue that the more a web site is used, the faster users can use the web site in the future due to improved
knowledge about the web site’s design. They estimate that after 5 visits to Amazon the user reduces his time costs
by almost $1.50 per session (or about $.40/minute) versus having to learn a new online bookstore.

Our analytical framework permits arbitrary values for w and g, but to illustrate our technique we choose
plausible settings for the simulation in the following section. To being we assume that the value of time to a
consumer is $.01/second. This translates into a yearly wage of about $70,000. Therefore every additional second
of waiting diminishes utility by .002 utils (=$.01/sec x -.194 util/$~-.002 util/sec), so we let £=.002. Suppose the
overhead for launching an additional thread is 10 milliseconds then a corresponding value for w is .00002. If the
system 1s at high utilization then launching and servicing an additional thread could take a substantial more
amount of time, hence ® could be substantially higher during high utilization. Finally, we assume that a consumer
can make a comparison a second, but attaches ten times the value to a second of cognitive effort versus a second
of waiting, e.g., A=.02. For example, suppose we ask a consumer to evaluate a list of 3 items with 4 attributes,
this would require (3-1) x (4-1) = 6 compatrisons and have an implicit cost of $.60 (=.02 util/ comparison x 6

comparisons + -.194 util/$). In compatison if the consumer was simply waiting 6 seconds, the implicit cost of
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time would be $.06.

5 An Empirical Illustration of Optimal Shopbot Design

In this section we consider a simulated example using the data presented in the previous section to show
how the design of the shopbot can influence consumer utility. In these simulations we can solve the shopbot’s
operational problem empirically which allows us to move beyond some of the assumptions that we were forced
to make in {3 to derive analytical results. Specifically, we assume prices are normally distributed and not
logistically distributed, we compute the order statistics of utility empirically and do not need to rely upon
approximations, the offers are no longer assumed to be 1.1.d., and the distribution of time to retrieve an offer are
gamma distributed and not exponentially distributed. These simulations allow us to assess the probability that
a consumer will prefer shopping at their favorite store versus the present shopbot design or versus the optimal
shopbot design. Furthermore we perform a couple of simulations to assess the sensitivity of these results to our
parameter settings.

The set of 28 online stores that are present in our database and the shipping offers that can be made by
each store are given in Table 7. To construct an actual offer the shopbot needs to search the online store, find
the price, and add the shipping cost. For example, if the list price of a book is $19.99, and the actual price at
1BookStreet.com is $15.19, then the book could be delivered by USPS Parcel Post with a delivery range of 6-21
days (expected time to deliver is 13.5 days) for a total cost of $15.19 or UPS 2™ Day with an expected delivery
in 9 days for a total cost of $27.14. If only these two offers were presented to the consumer, the utility of these
offers would follow an extreme value distribution with locations of -3.204 and -7.516, respectively, and a
common scale parameter of unity. The probability that a consumer would chose the first offer would be 98.7%.
Cleatly the first alternative dominates the second, and illustrates why not all offers need to be presented to the

consumer.
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Before the shopbot queries an online store to determine its price, the shopbot can predict the price using
the models estimated in the preceding section. Table 8 presents the mean and standard deviation of expected
prices under the assumption that no information is known about the store, see (27) for details on its calculation.
For example, without any specific information about past book prices, other than say its list price is $19.99, our
best guess is that buy.com will be cheapest with an expected price of $10.39 and a standard deviation of $2.00.

Notice the cheaper bookstores tend to have higher variance than more expensive stores.

Store Mean Std. Dev. Store Mean Std. Dev.
1bookstreet 0.76 0.13 Borders.com 0.62 0.13
A1 Books 0.75 0.06 buy.com 0.52 0.10
alldirect.com 0.63 0.05 Cherryvalleybooks 0.89 0.02
AlphaCraze.com 0.64 0.09 Classbook.com 0.96 0.06
Amazon 0.63 0.13 Codys Books 0.99 0.06
Baket's Dozen online 0.99 0.06 computetlibraty.com 0.99 0.06
barnesandnoble.com 0.63 0.13 Fatbrain 0.65 0.15
BCY Book Loft 0.72 0.07 HamiltonBook.com 0.70 0.07
bigwords.com 0.77 0.06 kingbooks.com 0.73 0.04
Book Nook Inc. 0.99 0.05 pagelbook.com 0.99 0.07
Bookbuyet's Outlet 0.62 0.13 Rainy Day Books 0.89 0.05
Books.com 0.70 0.09 Rutherfords 0.89 0.05
booksamillion.com 0.59 0.12 varsitybooks.com 0.75 0.05
booksnow.com 0.88 0.06 'WordsWorth 0.83 0.10

Table 8. The mean and standard deviation of prior price expectations for each store without any previous price
information at that store. These estimates are relative to the list price, and the predictions are normally

distributed.

We now consider the consumer’s utility under three scenarios using the parameters specified in the
previous section using the data described in Table 7 and 8. The first scenario is that the shopbot searches all
stores and presents all results (this is the current decision rule). The second scenario is that the shopbot knows
prices with certainty (we assume that the price of the book is equal to its mean and the list price is $19.99). The
third scenario that we consider is the case where prices are not known with certainty, but instead the shopbot
assumes a priori prices are normally distributed with the means and standard deviations given in Table 8. In both

of the latter two scenarios we assume that the shopbot will select the optimal set of offerings to present to the
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consumer. To simplify calculations we assume that all stores respond to a query (as opposed to a 95% probability
that the store will respond). This is not a strong assumption since all stores have similar probabilities of
responding and the probability of no response is independent of the offer returned. Incorporating the probability
that the store will reduce the utility of all scenarios. Additionally, we assume that a priori we can determine the
optimal order of stores to query by sorting on the expected utility (the Appendix contains a discusses the validity
of this assumption). Finally, in our simulation if one offer from a store is retrieved, we assume that all offers from

that store are retrieved without any extra delay or cost, since delivery costs are deterministic.
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Figure 6 Expected utility based upon the number of stores that are queried using several different
shopbot designs.

The expected utility for the three scenarios are plotted in Figure 6 against the number of stores that are
to be queried. The stores are ordered according to their best offer. For example, if only one store could be

searched then the shopbot would only check 1BookStreet.com. Presumably this would be the consumer’s
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favorite store (denoted by ‘) Notice that the utility for the current shopbot peaks after five stores (denoted
by .) and then starts to decline quickly due to the high cognitive effort placed on the consumer of comparing
so many alternatives. In fact, if consumers were asked to choose between the current shopbot design that queries
all stores and present all offers (denoted by @) versus simply visiting their favorite store we would expect that
consumers would choose their favorite store by 90%. In contrast, the optimal shopbot designs are not penalized
for querying a larger number of stores since they will only select the best offers to present to the consumer. The
optimal designs under the assumption that prices are known or normally distributed (denoted by ¥ or A)
searched ten and sixteen stores, respectively, and would be preferred by consumers over simply visiting their
favorite store by 76% and 78%, respectively. Even if current shopbots were scaled back so that they searched

fewer stores (but still selected the best stores) consumers would prefer the faster search and smaller decisions

sets by 64%.

Offer Store Delivery Service Price Shipping Total
1 1BookStreet.com USPS Parcel Post 6-21 days $15.19 $0 $15.19
21 Amazon.com USPS Priority Mail 5-10 days $12.59 $3.95 $16.54
51 Buy.com Standard Shipping N/A $10.39 $3.95 $14.34
48 Borders.com Standard 5-10 days $12.39 $3.90 $16.29
26 Barnesandnoble.com Standard Ground 4-7 days $12.59 $3.99 $16.58
25 Barnesandnoble.com USPS 5-9 days $12.59 $3.95 $16.54
42 booksamillion.com Standard Ground N/A $11.79 $3.95 $15.74
16 AlphaCraze.com USPS Special Rate 5-15 days $12.79 $3.50 $16.29
64 computerlibrary.com N/A N/A $19.79 $0 $19.79
69 hamiltonbook.com USPS N/A $13.99 $3.00 $16.99
17 AlphaCraze.com USPS N/A $12.79 $3.95 $16.74
70 Kingbooks.com USPS Book Rate 16 days $14.59 $2.50 $17.09

Table 9. Listing of offers that will be presented to the consumer for the scenatio in which prices are known (and
assumed to equal their expected values).

To help understand what offers would be presented, we list the optimal offering set in Table 9 from the
optimal shopbot design when prices are assumed to be known (the solution that corresponds to V) The ten

stores that were queried would yield 32 separate delivery options, but only twelve out of these would be presented
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to the consumer. We are not simply identifying the cheapest book stores, but those stores that yield the highest

utility. For example, Amazon and Borders have higher prices but were included due to the brand equity of their

store names and computerlibrary.com and 1bookstreet are included due to their free shipping policies.

Expected Shipping
Offer Probability Store Delivery Service Price Cost Total
1 95.0% 1 Bookstreet.com USPS Parcel Post 6-21 days § 1519 ¢ 000 $ 1519
21 80.9%  Amazon.com USPS Priority Mail 5-10 days § 1259 § 395 § 16.54
22 1.3%  Amazon.com Second Day Air 5 days § 1259 § 795 $ 20.54
51 84.3%  Buy.com Standard Shipping n/a § 1039 $ 395 $ 14.34
52 0.2%  Buy.com Second Day Air n/a § 1039 $ 795 $ 18.34
48 71.3%  Borders.com Standard 5-10 days § 1239 § 390  §  16.29
59 0.5%  Borders.com 2 Day 5 days § 1239 $ 795 $  20.34
25 61.2%  barnesandnoble.com U.S. Postal Service 5-9 days § 1259 § 395 § 1654
26 64.2%  barnesandnoble.com Standard Ground 4-7 days § 1259 § 399 § 1658
27 0.1%  barnesandnoble.com FedEx Second Day 3-4 days § 1259 % 795 § 20.54
28 0.0%  barnesandnoble.com UPS 2nd Day Air 3-4 days § 1259 % 799 § 20.58
42 56.4%  booksamillion.com Standard Ground n/a § 1179 $ 395 $ 15.74
43 0.1%  booksamillion.com 2nd Day Air n/a § 11.79 $ 795 § 19.74
16 56.4%  AlphaCraze.com USPS Special Rate 5-15 days § 1279 $ 350 $ 16.29
17 42.7%  AlphaCraze.com UPS Regular Mail n/a § 1279 $ 395 § 16.74
18 12.2% AlphaCraze.com Express Priority Mail 3-4 days § 1279 $ 494 § 17.73
64 44.6%  computerlibrary.com N/A n/a § 1979 § 000 $ 19.79
69 43.3%  hamiltonbook.com USPS n/a § 1399 § 3.00 $ 16.99
70 38.4%  Kingbooks.com USPS Book Rate 16 days § 1459 § 250 § 17.09
71 1.2%  Kingbooks.com Standard Shipping 5-9 days § 1459 § 395 § 18.54
65 44.2%  Fatbrain.com UPS Ground 4-8 days § 1299 § 395 § 16.94
66 23.7%  Fatbrain.com Standard 3-4 days § 1299 § 495 § 1794
67 0.1%  Fatbrain.com Second Day Air 3 days § 1299 § 795 $ 20.94
13 31.7%  alldirect.com USPS Book Rate n/a § 1259 § 345 $ 16.04
36 35.4%  Bookbuyer's Outlet Standard n/a § 1239 § 450 % 16.89
39 2.0%  Books.com USPS Book Rate 16-45 days $§ 1399 $§ 38 § 17.84
40 17.3%  Books.com uPs 4-13 days $ 1399 § 395 § 1794
5 1.5% A1l Books UPS Ground 9-11 days § 1499 § 395 $ 18.94
30 2.1%  BCY Book Loft USPS 4th Class n/a § 1439 $§ 400 § 1839

Table 10. Listing of best offers and the probability that will be presented to the consumer for the scenario in
which prices are assumed to be normally distributed.

If prices are not known with certainty then it is better to search at a larger number of stores. Consider
the solution given in Table 10 that corresponds with the case where prices are not known with certainty but are
a priori assumed to be normally distributed with the mean and standard deviation given in Table 8 (this solution

is denoted by A in Figure 6). This simulation shows that it is best to search at sixteen stores which would yield
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55 possible offers. Since prices are not known with certainty the offer set cannot be determined until after the
prices are realized, therefore we also list the probability that a offer would be presented to the consumer in the
final offer set. Even though a larger number of offers may be potentially included, on average we would expect
to only see nine or ten offers presented to the consumer. The ability to select a smaller number of offers
demonstrates an important reason why the optimal shopbot design performs so much better than the present
shopbot.

The parameter settings play an important role in determining the benefit of the improved shopbot. First
consider the case whetre w, £, and A are scaled by a factor of 10 to reflect that time is more valuable. If prices are
unknown the shopbot would search no more than five stores and most likely only present the best offer
retrieved. Again the high cost of time means that the shopbot needs to be much more intelligent in anticipating
the tastes of the consumer. In contrast, if time is less valuable, being scale by a factor of .1, then the current
shopbot design performs more comparably to the optimal shopbot design. Finally, consider the case where a
consumer is indifferent between expending time in a cognitively taxing activity (such as comparing results) and
simply waiting (§=1=.002). Under this assumption the current shopbot design petforms more comparably to
the optimal shopbot design and the shopbot is more likely to be preferred by the consumer than simply visiting

their favorite store.

6 Optimizing Shopbot Profitability

Our discussion up to this point has focused upon optimal shopbot design from a consumer standpoint.
However, the pertinent question for shopbot management is how do these operational decisions effect the
shopbot’s profitability? In this section we consider the connection between utility and profits. The results of
the previous section show that there are large utility gains to the consumer of using an optimal shopbot design,
although these are diminishing returns. If we temper the expected gains to the consumer with the expected costs
to the shopbot of additional search then the consumer’s utility maximization solution may not be the same as

the shopbot’s profit maximization problem.
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The total profits (II) earned by the shopbot during the period of interest (such as a year or quarter) can
be decomposed into the profits earned from N consumers who each make M visits to the shopbot. The
probability of a purchase on a particular visit depends upon whether utility (1)) for the /th consumer on their
Jth visit exceeds some reservation level (R,), where utility is defined in §3, i.e., "=max(U<p>). If the consumer
makes a purchase then the marginal profit earned by the shopbot is 7;. For example, the shopbot may earn a
commission upon the sale of a book from the retailer. The fixed costs incurred by the shopbot during this time

period is F. We can compute expected profits as follows:

N M
Bl = y 5 P(V,>R)T, - F 28)
i=1j=1

To complete this specification we define the setver load or responsiveness (w) as endogenous to the
system. For example, suppose that the interarrival time between visits is exponentially distributed with a mean
of Z seconds, the average time to process a request is / seconds, and server can execute L requests per second.
This is a queuing theory problem, that allows us to treat ® endogenously.

Finally, we mention the need to incotporate heterogeneity in consumer response into these calculations.
Some consumers may value fast delivery highly, while others think more highly of one store than another. This
heterogeneity can be represented by assuming that the f in the utility function follows a multivatiate distribution,
p~N (Ba Vﬁ)

A solution to the optimal shopbot design requires data on each of these elements which is not available
to us. However, it is straightforward to show that if utility increases, cetetis peribus, then profitability will
increase. If the current decision rule of shopbots is to search all stores and present all results, then the results
of the previous section show that utility and hence profitability can be increased by querying and presenting a
subset of stores appropriately chosen. In other words, our optimal shopbot design requires fewer computational
resources than current shopbot design butincreases utility to consumers, which implies that our optimal shopbot

design is more profitable than the cutrrent design of searching all stores and presenting all results.
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7 Discussion and Conclusions

We began this article with the observation that shopbots have not fulfilled their original promise of
enabling consumers to comparison shop. Our model has provided several insights into how improved shopbot
design could increase their value and subsequent use by consumers. Specifically, shopbot design can be improved
by selectively presenting and querying stores. Our empirical analysis shows that book prices at online stores can
be predicted with a high degree of accuracy without having to query a store but instead rely upon past prices.
Embedded within our framework is a compensatory utility model that aids the shopbot in understanding user
preferences. This utility model helps the shopbot understand the expected gains to the consumer from more
search and balances them against the cost of searching and presenting too much information to consumers.

Our approach to solving the shopbot design problem has taken design elements from computer science
and statistics with models of consumer behavior from economics and marketing. This research represents a
cross-disciplinary approach that we believe is necessary in the emerging area of research in e-commerce. We
believe a dominant research theme in this area is to use models of consumer behavior to better improve the
design of web sites. We believe this to be a fertile area for new research. In conclusion, we mention several ideas
about future research directions that could improve upon the limitations of our present framework.

1. We have assumed that user preferences are known. However, a shopbot may need to learn from past
visits and better anticipate a user’s preference function. Mostlikely consumers will exhibit heterogeneous
behaviors, some consumers may be price sensitive and others delivery sensitive. To further complicate
matters these preferences may change through time. Consider a student who needs to order a book. If
the book 1s needed for a class that is about to begin next week, the student may be delivery sensitive,
while the following week the student may return to their normally price sensitive mind set.

2. An even more sophisticated shopbot could actively query a consumer to determine their preferences for
specific stores, delivery times, and prices before or as the query process is carried out. A number of
shopbots do query consumers about their preferences before launching a search, but these queries are

currently quite crude and laborious. Our suggestion is that the shopbot adaptively ask questions based
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upon the information it has about the consumer.

An improved understanding of how consumers perceive waiting time is needed. We have assumed a
simple framework in which disutility from waiting is proportional to the time spent waiting. However,
filler tasks could be performed that could alter consumers perceptions of the time spent waiting. These
filler tasks could be used to actively collect information related to the query or could be totally unrelated
and simply meant to occupy the user while the search is proceeding.

Consumers could choose baskets of items instead of a single item. These baskets can be comprised of
both complementary and substitutable products, instead of perfectly substitutable goods as considered
in this paper. Consider the purchase of a vacation. It may require the purchase of airline tickets, hotel
reservations, an rental car, entertainment, etc. A more advanced shopbot could consider the selection
of not only a single product, but the bundle of products.

We have not explicitly modeled the shopbot profit function, but instead focused upon one of its input
components, consumer utility. However, profits may not be directly proportional to utility. The shopbot
may engage in satisficing behavior or need to consider if a consumer will even make a purchase.
Additionally, there are many questions about competition between stores and shopbots that also need
to be considered.

Our shopbot design could also be applied to information goods. Our application to online bookstores
was largely due to their popularity and the availability of data. More generically these techniques could
be used in text filters, search engines, and recommender systems where decisions about which items to
retrieve and present to a user must be made. A common design element is the need to predict the value
or utility of an item and to balance the speed of the query with the cognitive demands that will be placed
on the user to evaluate the choices.

Shopbots could be more proactive in aiding consumers. For example, they could automatically be trained
on consumer utility functions and recommend products without being prodded by the user.

Additionally, the shopbot may be able to anticipate future price changes and recommend that the user
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waitin hopes of finding a better price. Book prices are relatively stable through time, but consider airline
ticket prices. A shopbot that could anticipate the likelithood of future price changes might be very

valuable, especially for the uninformed consumer.
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Appendix

To demonstrate how independence and identical assumptions about U, limits our solution consider the
following low-dimensional case. Suppose there are three stores and the shopbot must select the best set of two
stores to query. Additionally, we assume utility follows a multivariate normal distribution across the stores and
all queries are presented. In notational form these assumptions are S=3, P'=2, p=r, and [U,,U,, U] ~N(,X).

The shopbots problem is to determine which set ({1,2}, {1,3}, or {2,3}) yields the highest expected
utility. If X and Y follow a bivariate normal distribution (E[X]=py, E[Y]=H,, Var[X]=0,’, Var[X]=0,7, and
Cort[X,Y]=p), Clatk (1961) showed that E[max(X,Y)]=p, @ (A/v)+u,D(-A/v)+vdp(A/v), where A=p -, and
V'=0,+0,>-2p00,. Suppose, that the mean and variance for the three stores are (1,1), (0,0%), and (0,6°), where
0>1. In other words, there is a low priced store and two stores with higher expected prices but greater variance.
At first glance it would appear that the shopbot should always search at the lower price store. However, if 6>3.67
then the optimal decision is to choose the set with the two higher priced stores {2,3}. The intuition is that the
high variance results in a high likelithood of finding a bargain, which compensates for the lower expected value.
A positive correlation between stores 2 and 3 would lessen this effect, while a negative correlation would magnify
this effect.

This example illustrates that assumptions about independence and identical distributions can alter the
decision set of which stores to query. However, the variance has to be high to counter our intuition that we
should always search at the lowest priced stores. In most circumstances we expect searching at the stores with

the lowest expected prices will be optimal, therefore the real problem is determining how many stores to query.
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