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ABSTRACT: This article studies the effects of queueing 
delays, and users’ related costs, on the management and 
control of computing resources. It offers a methodology for 
setting price, utilization, and capacity, taking into account 
the value of users’ time, and it examines the implications of 
alternative control structures, determined by the financial 
responsibility assigned to the data processing manager. 

1. INTRODUCTION 
The importance of queueing effects in studying the per- 
formance of computer systems is well known; in fact, 
queueing models dominate the computer performance 
evaluation literature.’ It is not as clear, however, what 
the implications of these effects on the management 
and control of computing resources are, thus there is a 
gap between the technical level and the management 
level. This gap limits the ability of the data processing 
manager to make sound resource allocation and capac- 
ity decisions, and hampers his ability to justify invest- 
ments for the purpose of “improving service quality” or 
“reducing turnaround time” to high-level management. 
Although top management may well sympathize with 
the desire to improve service quality, the inability to 
quantify the associated tradeoff is likely to put the data 
processing manager at a disadvantage in the competi- 
tion for the limited financial resources of the organiza- 
tion. If, in addition, the data processing department is 
not covering its costs, or the utilization of existing re- 
sources seems low, the data processing manager is even 
less likely to be successful in presenting his case to top 
management. 

’ A special issue of Computing Suweys (Sept. 1978) may serve as a tutorial on 
this literature. 
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This article studies the effects of queueing delays, 
and users’ related costs, on the management and con- 
trol of computing resources. The issue is studied by 
embedding a fairly general queueing model in the stan- 
dard microeconomic framework used to study price 
and capacity decisions in the computing context (cf. [z, 
13, 231. We examine the queueing effects under a num- 
ber of data processing control structures, determined by 
the financial responsibility assigned to the data process- 
ing manager (cf. [5, 201). Such control structures may 
take on a variety of forms, ranging from “free access” 
(i.e., no explicit chargeout; cf. [IT]), through a “com- 
plete chargeout” structure which calls for full cost re- 
covery, to the “profit-center” structure, where data 
processing is managed as an independent profit-maxi- 
mizing division. This study assesses the impact of users’ 
delay cost on the price, capacity, and utilization ob- 
tained under different financial responsibility (or con- 
trol) structures, and compares them to the results ob- 
tained under the objective of maximizing the expected 
net value of data processing services to the organiza- 
tion. 

In addition to the analytic framework suggested by 
our results, which provides guidance to the data proc- 
essing manager in the determination of price and ca- 
pacity as well as assistance in presenting his case to 
higher-level management, the implications of our re- 
sults help clarify a number of issues which arise in the 
context of computing resource management; some of 
these issues are listed below. 

1. Computing centers are often required to set prices 
to cover their costs (e.g., most of the centers studied by 
Nolan [ZO] and Drury [8] were responsible for covering 
100 percent of their costs), a requirement which stems 
from standard cost-accounting practices (cf. [12]). We 
demonstrate that in the presence of delay costs, cost 
recovery may be quite undesirable and would lead to 
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under-utilization of resources. Our results suggest that 
the organization as a whole would benefit from prices 
that lead to a computing center deficit; further, we 
show that (under the standard assumptions made by 
cost-accountants), the magnitude of this deficit is equal 
to the expected overall delay cost incurred by the ag- 
gregate user population. In particular, our results re- 
duce to the standard cost-accounting procedure when 
the cost of delay is zero. 

2. It is sometimes argued that computing resource 
pricing need not take queueing effects into account 
since these effects are “self-regulating”: Congestion 
leads to delays which deter additional users from join- 
ing the system. Our results suggest that the “self-regu- 
lated” equilibrium leads to an over-congested system, 
and that the organization as a whole would benefit 
from reducing congestion by imposing queueing-related 
charges. We demonstrate, analytically and graphically, 
the determination of the expected-net-value maximiz- 
ing price, and show that it is equal to the expected 
delay cost inflicted (by the added work load) on the rest 
of the system. 

3. It is often suggested that organizing the computing 
center as a profit center would lead to an improvement 
in its overall performance. In contrast, users and data 
processing managers are often uncomfortable with this 
suggestion (cf. [ZO (ch. Q), 261. It is well known that one 
of the risks associated with the profit-center organiza- 
tion is that the computing center will resort to monop- 
oly pricing practices. We demonstrate that the problem 
of monopoly pricing is further aggravated in the pres- 
ence of queueing delays since a profit center may sig- 
nificantly reduce both the available capacity and the 
relative utilization of this capacity. Thus, the aversion 
to the profit-center organization may well be justified. 

4. Computing center managers often face the accusa- 
tion that low utilization ratios reflect inefficient usage 
of computing resources. It is easy to demonstrate that 
full utilization is undesirable; but data processing man- 
agers often have difficulty justifying utilization rates 
which are far below 100 percent. Our analysis may 
help the data processing manager determine and justify 
the level of system utilization. Our results demonstrate 
that, taking users’ delay cost into account, seemingly 
low utilization ratios are often optimal. 

The issue of “turnaround time” in the pricing of com- 
puter services is briefly discussed by Sharpe [23 (ch. 
ll)] and Jensen [13]. The general congestion-control 
problem has been discussed by Yechiali [30]. Dolan [6, 
71 and Pick and Whinston [21] considered a dynamic 
priority-queueing mechanism that focuses on the in- 
centive-compatibility issue: This mechanism induces 
users to reveal the true value of their priority index. 
Other relevant (but loosely related) studies are those by 
Greenberger [lo], Marchand [18], Naor [lQ], and Yechi- 
ali [28, 291. 

The plan of this article is as follows. In the next 
section we set up the framework for our analysis. Sec- 

tion 3 studies the price and capacity that maximize the 
expected net value of computer services to the organi- 
zation as a whole, and considers the implications of a 
“free-access” policy. The budgetary implications of net- 
value maximization are studied in Section 4. The 
profit-center control structure is studied in Section 6, 
and our concluding remarks are offered in Section 6. 

2. FRAMEWORK FOR ANALYSIS 
In this section we set up the framework for our analy- 
sis. Any successful economic analysis must abstract 
from the complexities inherent in the operation of the 
actual system under study while capturing the major 
tradeoffs of interest. By focusing on the most important 
aspects, one obtains insights that can then be applied to 
the actual system. For example, when the economist 
describes the “demand for computing” by a continuous 
decreasing function of “quantity” (per unit of time), he 
automatically sacrifices some of the important features 
of actual computer systems for the sake of gaining in- 
sights that would not have been attainable otherwise. 
The degree of abstraction required is not significantly 
different from that in other areas where microeconomic 
analysis has achieved remarkable success. 

We view the operation of the computer facility as 
follows. Jobs (or transactions) arrive into the system 
randomly; they spend a random amount of time in the 
system, and then depart. The time spent in the system 
consists of actual processing time and waiting delays. 
This applies to batch-processing systems, where one ob- 
serves job (and output) queues in the traditional sense, 
and to time-sharing systems, where queues are internal 
and the response time includes a waiting component in 
addition to the processing time. To capture the variety 
of possible cases, we shall apply a general queueing 
framework without resorting to any specific architec- 
ture. 

The standard microeconomic model applied by pre- 
vious authors (cf. Sharpe [23], Cotton [2], Jensen [13]). 
summarizes users’ valuations by a value function from 
which their demand curve can be derived. Letting 9 
represent the “quantity of computing” per unit of time, 
conveniently represented by the number of standard- 
ized transactions (or jobs) processed per unit of time, 
the value function V(9) represents the total value (to the 
organization as a whole) associated with 9 transactions 
per unit of time, and is obtained by aggregation over 
users’ subsystems. The marginal value function repre- 
sents a relationship between the price per transaction 
and the number of transactions per unit of time, which 
depicts the demand curve (see [23 (ch. 2)]): If users are 
charged a price of p per transaction, the number of 
transactions per unit of time will be given by the solu- 
tion of 

V'(9) = P. (1) 

How tangible is the value function V( .)? In a business 
environment, quantifying the benefits of computer pro- 
jects is a necessary part of the systems analysis process; 
the value function is obtained by aggregating these 
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benefits (or values) over projects (see Sharpe [23 (ch. 
z)]; Couger [3] and Kleijnen [15, 161 present compre- 
hensive reviews of methods for quantifying the benefits 
of computer projects in various circumstances). Yet, 
there may be situations where quantifying the value 
function is impractical (consider, for example, a univer- 
sity environment). In such cases, an underlying value 
function still exists, but it is too difficult to measure. 
Clearly, qualitative results and insights obtained 
through modeling apply to both cases. Direct applica- 
tion of numerical results is feasible in the former case, 
while the latter may require an iterative “trial and 
error” process.’ 

We now extend the standard microeconomic ap- 
proach to our queueing framework. It is natural to re- 
place 4 by the arrival rate of transactions (or jobs) to the 
computer system. We follow the common assumption3 
that the times between consecutive arrivals to the sys- 
tem are independent identically distributed random 
variables with finite mean l/X; X is the arrival rate to 
the system (in the frequently-assumed special case 
where the arrival process is Poisson, X is the Poisson 
rate), The arrival rate X is affected by the value of 
computer services and the cost of using these services. 
The value of computer services is represented by the 
value function V(X), obtained (as in the standard deter- 
ministic case mentioned above) by aggregating the val- 
ues of various user subsystems; V(X) is the expected 
gross value (per unit of time) corresponding to arrival 
rate X. We adopt the usual assumption that the value 
function V(X) is twice differentiable and strictly con- 
cave. 

Consider now the analog of the demand equation (1). 
We assume that users (or user departments) decide on 
the addition of work load (i.e., increasing the arrival 
rate by adding new application subsystems) by compar- 
ing expected added value to expected added cost (this 
assumes that aversion to the risk associated with uncer- 
tain turnaround time does not play an important role in 
the evaluation of computer projects and hence may be 
ignored). When the cost of delay is zero and the price 
per transaction is p, eq. (1) becomes V’(X) = p (i.e., 
expected marginal value = marginal user cost = price). 
However, when the cost of delay is positive, the ex- 
pected user cost consists of actual payment (price) and 
expected delay cost. We assume that the delay cost is v 
per unit of time per job. Thai: is, a user is willing to pay 
u monetary units for obtaining the processing results 
one time unit earlier. Now, consider the system in sta- 
tionary state, and let W denote the expected time a job 
remains in the system from i,ts arrival epoch until its 
processing is completed. Then, the expected delay cost 
per job is v . W, and the expected user cost per job is 
the sum of the direct payment and the expected delay 
cost, p + v . W. It follows that the analog of eq. (1) 

‘The “trial and error” process is discussed in the framework of our model in 
Section 6. 

3 In fact, even this general specification could be relaxed since we need only 
the conditions that imply Little’s law (see. e.g., [II (Secticm ll-3)]). 
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when delay costs are taken into account is given by 

V’(X) = p + v . w. (2) 

Computer systems are typically modeled either as 
Markovian networks of queues or as special cases of the 
GI/G/s queueing system. To model variations in the 
scale (or capacity) of the system, consider first the spe- 
cial case of a Markovian network of queues. If the sys- 
tem contains N servers, we can write the service rate of 
server i as p . a, (i = 1, 2, 3, . . . , N), where p is a scale 
parameter and Ui characterizes service station i. The 
parameter p represents the service capacity of the sys- 
tem. When p is doubled (say), the system can handle a 
flow of twice as many jobs per unit of time while main- 
taining the same (stationary) distribution of queue 
lengths. More generally, we assume that the distribu- 
tions of service times have a common scale parameter p 
which represents the capacity of the system. Thus, in 
the GI/G/s case, service times are distributed as H/M 
where H is a random variable and p is a parameter 
representing capacity. This specification determines II. 
up to a multiplicative constant. We fix p as the ex- 
pected output rate, measured in jobs (or transactions) 
per unit of time, when the system is fully utilized. 
(Thus, if the system is modeled as a Markovian net- 
work of queues, p is the overall exit rate from the 
system when all servers are busy; in the special single- 
server case, p is simply the service rate. For the GI/G/s 
model, p is the number of servers s, divided by the 
expected service time.) Note that in this model, service 
times are measured in terms of elapsed time and hence 
are comparable to arrival rates; this is a convenient 
aggregation which allows us to study the queueing ef- 
fects without depending on specific system details.4 We 
denote the cost associated with capacity level p by C(r); 
following the treatment of value and demand as rates 
per unit of time, C(p) is a cost rate per unit of time 
(thus, if the equipment has been purchased, its pur- 
chase price would be converted to the equivalent lease 
rate5). 

To close the specification of our model, we now re- 
late the arrival rate and system capacity to expected 
delay. Consider the system with arrival rate X and ca- 
pacity p in its stationary state. Denote by L the ex- 
pected number of jobs in the system, and recall that W 
denotes the expected time a job spends in the system. 
Let p = h/p denote the relative utilization of the sys- 

tern. A change in the time scale changes both X and p 
so that p remains constant. We assume that L is invar- 
iant to such changes in the time scale, that is, we can 
write6 L = L(X, IL) = f(p) = f(X/p). This assumption will 
always hold when X is a scale parameter of the interar- 
rival-time distribution and p is a common scale param- 

’ An alternative would be to focus on a system bottleneck that leads to 
congestion (CPU, channel. etc.). 

‘An alternative is to consider the expected discounted value and cost 
throughout. 

bFormally, L(h, p) is a function of two variables and f(p) is a function of one 
variable. For example. in the case of the M/M/l queue. L(X, p) = X/(p - A) 
and f(p) = p/(1 - p). Note that aL/ah = f’(p)/+ 
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eter of the distributions of service times. We further 
assume that the system satisfies Little’s law,’ 

L=XW, (3) 

that for any given capacity, W is a strictly increasing 
and differentiable function of A, and that as the relative 
utilization p tends to unity, the expected number of 
jobs in the system, L(p), tends to infinity.’ 

Little’s law, eq. (3), has an interesting interpretation 
in the context of our discussion. Recall that v is the cost 
of delay per job per unit of time. If the expected delay 
cost of a job is “charged” to it upon arrival, then (since 
the arrival rate is X) the expected delay cost to be 
“charged” to jobs joining the system in one time unit is 
X . VW. If delay costs were “charged” continuously over 
time, the delay cost incurred by the system per unit of 
time would be v times the number of jobs present, and 
its expected value would be v . L. Thus, eq. (3) intui- 
tively represents the equivalence of these two “charg- 
ing” conventions. Furthermore, we have demonstrated 
that the expected delay cost incurred by system users 
per unit of time is given by v . L = v . XW. 

Little’s law, eq. (3), allows us to represent the mur- 
ginal delay cost in a particularly useful form. Fix the 
capacity of the system at p, and differentiate eq. (3) 
with respect to A; this yields 

v . @L/&I) = v . w + v . x . @w/ax). (4) 

While our analysis requires only the mathematical 
validity of eq. (4), it is useful to interpret it as a decom- 
position of the marginal delay cost into a “self-regulat- 
ing” term and an “externality” term. First, the left-hand 
side of eq. (4) represents marginal delay cost (with re- 
spect to A): the expected overall delay cost per unit 
of time was shown to be v . L, and its derivative is 
v . (dL/dX). Now, an (infinitesimal) increase in X in- 
creases the expected overall delay cost in two ways: 

1. The added jobs themselves incur a delay cost 
which, to a first-order approximation, has expected 
value v a W per job; we call this term of eq. (4) the 
“self-regulating” term since it represents a cost inflicted 
on the user that generated the added work load. 

2. The added work load increases the expected delay 
cost inflicted on all current users by v . X . @W/%X) per 
added job (to the first order).g We call this term the 
“externality” term: When a user adds work load to the 
system, he inflicts a cost on all other users by increas- 
ing their overall expected delay. Unlike the “self-regu- 
lating” term, this cost component is not perceived by 
the generating user (since it is inflicted on others), and 
hence it represents an externality. 

‘Little’s law is a central result in queue@ theory that holds under very 
general conditions. The reader is referred to [ll (Section ll-3)] for a detailed 
discussion. For our purposes. it is sufficient to point out that both the GI/G/s 
queueing system and Markovian networks of queues satisfy Little’s law. 

‘This assumption is not needed for the analysis. but due to its common 
applicability it will be followed in the graphic representations and intuitive 
interpretations. 

‘To see this, note that increasing A to h + AX increases W to W + &4/dx AX 
+ o(Ah); thus. the expected added delay cost inflicted on current users is 
u A dW/ax Ah + @AA) per unit of time. 

The decision problem of the data processing manager 
facing these demand and cost functions can be sepa- 
rated into two related subproblems: First, for a given 
system configuration with fixed capacity p, he has to 
decide how to allocate the limited resources among 
competing users; this problem is known as the short- 
run (or fixed-capacity) problem. Second, he has to de- 
cide on the optimal scale (or capacity) of the computing 
facility; this problem is known as the long-run (or vari- 
able-capacity) problem. 

In the fixed-capacity (short-run) problem, p is given 
and the manager sets a price p which determines the 
arrival rate X through eq. (2) (note that W in eq. (2) 
depends on A). The expected gross benefit per unit of 
time (to the organization as a whole) is given by V(X); 
the expected delay cost per unit of time is equal to 
v . L (= v . XW, by eq. (3)). In the long-run (variable- 
capacity) problem, p becomes variable and has to be 
determined by balancing the expected benefits of in- 
creasing capacity against the capacity cost. Clearly, the 
approach taken by the data processing manager in solv- 
ing these problems depends on the objective function 
being maximized. The first objective considered in the 
following section is maximizing the expected net value 
of computing services to the organization as a whole. 

3. NET-VALUE MAXIMIZATION 
In this section we derive the price and capacity that 
maximize the expected net value of data processing 
services to the organization as a whole (cf. [23 (ch. l)], 
for a general discussion of this objective). We first con- 
sider the short-run problem, where processing capacity 
g is fixed. Since p is fixed, the cost of capacity may be 
ignored; the price p uniquely determines the arrival 
rate h so the net-value maximization problem may be 
written as 

max(V(A) - v . L), 
x (5) 

where L = L(X, EL) and p is fixed. 
The first term in eq. (5) is value per unit of time; the 

second term, v . L, is the expected aggregate delay cost 
per unit of time (= expected number of jobs in system 
x delay cost per job per unit of time). Note that unlike 
the usual deterministic formulation, the capacity con- 
straint X 5 p need not appear explicitly in eq. (5). since 
its violation would imply an infinite delay cost. The 
first-order condition for maximizing eq. (5) is 

V’(h) = v . (tlL/dh). (6) 

The arrival rate X0 obtained from eq. (6) equates mar- 
ginal value to marginal delay cost. To find the price 
that induces this arrival rate, we substitute the price- 
arrival rate relationship of eq. (2) into eq. (6) to obtain 

p = v . @L/&q - v . w. (7) 

Using eq. (4) to decompose the marginal delay cost 
v . @L/&I), we obtain 

p = v . x . (aw/ax), (8) 
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FIGURE 1. The Short-Run Pricing Problem in the Presence of 
Delay Costs. 

where the right-hand side of eq. (8) is evaluated at 
X = X0. We have thus shown that the net-value maxi- 
mizing price is equal to the “externality” term of the 
marginal delay cost decompo.sition, eq. (4), (represent- 
ing the expected marginal delay cost inflicted on the 
rest of the system), evaluated at X = X0. 

The solution is demonstrated graphically in Figure 1. 
The optimal arrival rate, X0, is obtained by intersecting 
the marginal value curve depicting V’(X) with the mar- 
ginal delay cost curve, depicting z, . (&L/~I) (see eq. 
(6)). However, the price leading to X = X0 is not read off 
the point of intersection of these two curves since each 
job already incurs an expected delay cost of ZI . W. 
Thus, to avoid double charging (once by waiting and 
one more time through the monetary payment), the 
payment to the computing center has to be reduced by 
z, . W (see eq. (7)). This gives rise to the price p. = ‘u . X 
. @W/ax) which is read off the curve depicting the 
“externality” term (the dotted curve in Figure 1) at 
A= x0. 

It is instructive to compare the net-value maximizing 
result to the result obtained (for the same system con- 
figuration) under a “free-access” policy. Such a policy, 
which is based on the notion that computing is a 
“priceless” good, has been implemented in the comput- 
ing centers of several academic institutions, notably 
Dartmouth College (see [17]).‘” One reason that such a 
system may be attractive is its “self-regulating” nature: 
When the system becomes overloaded, service quality 
deteriorates. Consequently, users are discouraged and 
they reduce their work load. We now examine the rela- 
tionship between the “self-regulating” result and the 
net-value maximizing result. 

Clearly, access under the “free-access” policy is not 
completely free since users still incur waiting delay 
costs which restrict their utilization of the computing 
facility. The “free access” arrival rate XF is obtained by 
setting p = 0 in eq. (2); thus, XF is the solution of 

“As might be expected, the “free-access” policy as described by Luehrmann 
and Nevison (171 has been completely modified since its inception. 

V’(b) = v . w. (9) 
How is XF related to the net-value maximizing arrival 

rate, X0? The “self-regulating” cost term included in eq. 
(9) is strictly lower than the overall marginal delay cost 
(see eq. (4)); since V’(X) is strictly decreasing, this im- 
plies XF > X0, as might be expected.” Thus, we have 
shown that the “free-access” policy leads to an over- 
congested system,” and “self-regulatioo” has to be aug- 
mented by explicit pricing to the benefit of the organi- 
zation as a whole, 

Next, we address the long-run problem, where capac- 
ity p is variable. The problem now is to find the optimal 
scale of the computing facility where the cost of capac- 
ity, C(p), is taken into account. This problem is com- 
bined with that of finding the price p, or equivalently 
the arrival rate X, that will optimally utilize this capac- 
ity. The variable-capacity problem can be formulated as 

yxlV(h) - v . L(X, fi) - C(p)). 
II 

The first-order conditions are 

and 

V’(X) = v . (&/CA) (104 

C’(p) = -v . (aL/ap). VW 

Recalling that L(X, p) = f(X/p), we have X./ax = 
(~/p)fl(h/p) and X./&L = -(X/p’lf’(X/& factoring out 
f ‘(X/p), we obtain 

C’(P) = (VP) V’(N. (11) 

It is instructive to compare this solution to that of the 
usual deterministic case, where queueing delays are 
absent. In the deterministic case, capacity is expanded 
up to the point where marginal value equals marginal 
capacity cost, and the system operates at full utiliza- 
tion. In the stochastic case, the queueing delays imply 
the optimality of excess capacity, and the relative utili- 
zation p = X/p is less than unity. Since p < 1, the 
marginal capacity cost is not equated to marginal value, 
but rather to marginal value x relative utilization. 

To gain further insight to the factors affecting the 
determination of capacity and capacity utilization, we 
consider a simple example. Assume that the cost of 
capacity is linear: 

C(F) = A + b . /.J, (12) 

” For a similar result on the difference between “self-optimization” and 
“overall optimization” in a different context, see Yechiali (28, 291. 
l2 While Luehrmann and Nevison [17] advocate the use of the “free-access” 
policy, they use data which may (indirectly) demonstrate this point. They 
compare (17 (p. 95811 their system with a comparable system at the Massachu- 
setts Institute of Technology with the following results: 

Dartmouth MIT. 

CPU time (hours/month) 482 375 
Terminal hours (hours/day) 1000 about 300 

Assuming (as they do) that the systems indeed possess similar characteristics. 
an increase of about 30 percent in actual processing [for which CPU time is a 
proxy: this number is also consistent with the estimate of the increase in 
demand at Dartmouth. see [17 (p. 957)J) h as increased the average delay by a 
factor of about 2.5! (In the absence of externalities, the number of terminal 
hours at Dartmouth would have been about (482/375) x 300). 
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where the constant A represents fixed overhead costs 
and the marginal capacity cost is b. Let the demand 
function belong to the class of isoelastic demand func- 
tions: 

V’(X) = k/X”. (13) 

This corresponds to a value function of the form V(X) = 
k . X1-“/(1 - a). We require 0 < cz I 1 to guarantee that 
value is positive; the unit-elasticity case ol = 1 corre- 
sponds to the logarithmic value function, V(X) = 
k . In X. Now, eq. (lOa) and eq. (11) read 

and 

(14al 

k = b . p . A*-‘. P4bl 

These equations may be solved easily to yield the opti- 
mal values of X and CL. In the unit-elasticity case (a = l), 
we can substitute p = X/p and obtain the separable 
equations 

and 

k = v . d’bl (15a) 

k=b.p. VW 

Equation (15b) determines optimal capacity at /J = k/b; 
here, capacity is invariant to the specific queueing 
characteristics, and depends only on the demand char- 
acteristics and capacity cost. Furthermore, the demand 
for capacity is the same as the underlying demand 
function. Equation (15a) determines the optimal utiliza- 
tion ratio, p, which depends on the delay and demand 
characteristics, and is independent of capacity costs. 
This separation, which prevails in the unit-elasticity 
case, allows the data processing manager to set capacity 
without regard to the queueing characteristics and to 
take them into account when setting price (which de- 
termines the utilization of the system). 

Note that by eq. (15a), the optimal utilization ratio p 
depends on the relative marginal values of “time” ver- 
sus “computing”: An increase in the relative value of 
users’ time, v/k, induces lower utilization. The behav- 
ior of the optimal utilization ratio p as a function of v/k 
clearly depends on the queueing characteristics of the 
system; to study this behavior for a range of queue- 
ing characteristics, we examined it for the family of 
M/E,/1 models, where the service time distribution is 
Erlang with r degrees of freedom. The Erlang family of 
distributions is often used to model computer service 
times, and includes the exponential case as a special 
case (r = 1) and the deterministic case as a limiting case 
(r---f m). The expected number of jobs in the system in 
this model is given by the Pollaczek-Khintchine for- 
mula (cf. [ll (p. 251)]), which reduces to 

L = fbl = P + (1 + (l/rllb2/W - PI) 

for the M/E,/1 model. Now, the solution of eq. (15a) 
which yields the optimal utilization p as a function of 
v/k for different values of r is straightforward. As it 

RELATIVE VALUE OF TIME (v/k) 

FIGURE 2. Net-Value Maximizing Utilization, p, as a Function of 
the Relative Value of Users’ Time, v//f, for Three Models: (1) 
M/M/l (solid line); (2) M/,/l (dashed line); (3) M/D/l (dotted 
line). 

turns out, the graph of p as a function of v/k is not very 
sensitive to r; in Figure 2 we demonstrate the results 
for the exponential case (solid line), the deterministic 
case (dotted line), and the Erlang case with r = 4 
(clearly, all M/E,/1 models are bounded by the expo- 
nential and deterministic curves). As one might expect, 
optimal utilization is a decreasing function of v/k. Very 
low values of v/k are typical of production-oriented 
batch systems; in these cases optimal utilization is rela- 
tively high but usually significantly less than 100 per- 
cent (e.g., 75 percent for v/k = %z). This follows from 
the very fast decline of the optimal utilization, p, as a 
function of v/k, in the neighborhood of p = 1. When 
v/k becomes higher (which is the typical situation in 
the case of time-sharing and on-line systems), p goes 
down less sharply. When v is equal to k (which is a 
reasonable order of magnitude for on-line systems), op- 
timal utilization goes down to about 38 percent. Our 
results then indicate that even seemingly low utiliza- 
tion ratios are consistent with an overall optimum, es- 
pecially when time is costly. Significant excess capacity 
is not necessarily an indication of inefficiency: It is a 
necessity if turnaround time is to be kept low. 

4. COST RECOVERY 
One of the widely accepted methods for controlling and 
evaluating the computing center is through its budget. 
When the long-run average cost is constant and no ex- 
ternalities are present, net-value maximization implies 
a balanced budget. To see this, let C(h) = b . ~1 and 
ignore the queueing delays (i.e., let v = 0). Then, it is 
easy to show that at the optimum, the system is fully 
utilized and revenue equals cost, that is, the pricing 
problem is solved by requiring the computing center to 
balance its budget. This result is the basis for the stan- 
dard cost-allocation procedure (cf. [12]), and is widely 
recommended (cf. Sobczak [24]) and used (cf. [8, 201) by 
computing centers. 

What happens to this result when queueing effects 
are taken into account? Here, our net-value maximiz- 
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ing condition, ecj. (ll), implies fi . b = X . V’(X) and, 
substituting V’(X) from eq. (2), we obtain p . b = 
X . [p + z, . IV]. Using Little’s law, eq. (3), we thus 
obtain 

p.b=X.p+v.L. (16) 

The left-hand side of eq. (16) is the expected cost in- 
curred by the computing center per unit of time. On 
the right-hand side, (X . p) is expected revenue per unit 
of time, equal to the product of the expected number of 
jobs arriving per unit of time, X, by the price per job p; 
v . L is the expected total deIay cost incurred in the 
aggregate per unit of time. Thus, eq. (16) may be writ- 
ten as 

expected cost 

= expected revenue + expected delay cost. 

The budget of the computing center will not be bal- 
anced due to the “tax” represented by the delay cost, a 
“tax” which is paid by users but not collected by the 
computing center. Requiring the computing center to 
balance its budget will not lead to an overall optimum, 
but will rather create incentives leading away from the 
optimal solution. 

This result has important policy implications for the 
management and control of data processing. It suggests 
that, even under the standard assumptions made by 
cost accountants (cf. [12]),13 the widely used standard 
cost-accounting procedures are misleading when ap- 
plied to computing centers, due to the importance of 
queueing effects. Our results’4 suggest that cost-recov- 
ery is an undesirable maxim, which leads to under- 
utilization of available resources. Evaluating the data 
processing manager on the basis of cost recovery is in- 
appropriate; a data processing manager who maximizes 
the expected net value of computer services to the or- 
ganization as a whole will report (under the standard 
conditions) a deficit equal to the magnitude of the delay 
“tax” imposed on the aggregate user population. 

5. PROFIT-CENTER PRICING 
Computer centers are often organized as sovereign 
profit centers. Under this control structure, the comput- 
ing center sets the prices of computing services, basing 
them on the profitability of providing these services. 
Then, the computing center operates as an expected- 
profit maximizer, facing a downward-sloping demand 
curve. It is well known that such a “monopoly pricing” 
scheme reduces output and increases prices when com- 
pared to the net-value maximizing scheme. In this sec- 
tion we analyze the behavior of a computing center 
which maximizes i.ts own expected profits in the pres- 
ence of queueing delays. Clearly, our results also apply 
to the case of an independent expected-profit-maximiz- 

“These assumptions involve linearity of the cost functions and stationarity of 
demand and cost. Existing criticisms of these procedures focus on these two 
assumptions. 

” Our results hold whenever the capacity cost function C(p) is linear 01 
concave (thus allowing for fixed overhead or for economies of scale). 

ing firm which sells computer services in the market- 
place and faces a downward-sloping demand curve. 

Given that the cost of delay is incurred by users and 
does not appear as a cost item in the profit-and-loss 
statement of the profit center, will the data processing 
manager have an incentive to take it into account? The 
answer is positive since users’ decisions to utilize the 
system depend on their costs, which include both price 
and delay cost. When users face a price p and an ex- 
pected delay cost of u . W per job, the corresponding 
arrival rate is given by eq. (2); increasing W reduces the 
price which can be charged at each level of X and, 
consequently, the profits of the computing center. 

Let us examine the expected revenues and costs of 
the computing center when the arrival rate is X and 
capacity is p. The expected cost of capacity per unit of 
time is, obviously, C(p). The expected revenue per unit 
of time is equal to the product of the expected number 
of jobs X by the price per job p. Now, using eq. (2), 
p = V’(X) - v . IV, hence the expected revenue per unit 
of time is equal to X . p = X . [V’(X) - v . W]. As noted 
above, although the delay cost is incurred by users, it 
affects the revenues of the computing center since it 
increases the effective cost perceived by users, and 
hence is quite relevant to the pricing decision. It fol- 
lows that the expected net-profit rate of the computing 
center per unit of time is given by 

x . [V’(X) - v . w - C(p) 

= x . V’(X) - v . L(X, /.t) - C(/.l). 
(17) 

Clearly, the short-run (or fixed-capacity) problem is 
similar to the one studied in Section 3; the only differ- 
ence is that now the value function V(X) is replaced by 
the “revenue” function, I5 X . V’(X), and marginal value 
is replaced by “marginal revenue,” which is given by 

MR(X) = (d/dX)[XV’(X)] = V’(X) + XV”(X) c V’(X) 

(since V” < 0). The solution is obtained as in Figure 1, 
with MR( X) replacing V’(X). Since MR( X) < V’(X), the 
profit-center organization brings about a higher price 
and lower utilization than the net-value maximizing 
solution. These results are consistent with the usual 
implications of monopoly pricing schemes. 

Consider next the long-run problem. The first-order 
conditions for maximizing eq. (17) are 

and 

V’(X) + XV”(X) = (v/p) . f’(A/p) Wal 

C’bL) = v . (UP21 . fV/PCL), WW 
which imply 

C’(p) = (X/p) . [V’(X) + Xv”(X)]. (19) 

In the absence of queueing delays, profit-center pric- 
ing leads to lower capacity, a lower usage rate, and the 
same relative utilization (unity) when compared to net- 

‘5M~~e precisely. X V’(X) is the expected revenue in the absence of delay 
costs. 
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value maximization. In the stochastic case, the results 
depend on the parameters of the problem, but if both 
k . C’(r) and X . MR(X) are increasing functions, the 
profit center will select a lower capacity and induce a 
lower arrival rate X and lower utilization ratio p = X/p. 
The reduction in the relative utilization ratio means 
that the service quality (measured by the queueing de- 
lays) provided by the profit center will be better than is 
optimal for the organization as a whole (in the net-value 
maximizing sense). The reason for this behavior is that 
by lowering the load on the system, the average delay 
goes down and consequently users are willing to pay a 
higher price and increase the profits of the computing 
center (recall that by eq. (z), the delay cost reduces the 
price the computing center can charge). 

To demonstrate these effects, we study the examples 
of the linear cost function given by eq. (12) and con- 
stant-elasticity demand function given by eq. (13) for 
0 < a < 1, (When (Y = 1, no optimal solution exists 
since any proportionate reduction of X and p will re- 
duce the capacity cost without altering the other com- 
ponents of eq. (17)). Now, eq. (18a) and eq. (19) read 

k(l - cy) = v . (X”/r) . f ‘(X//t) (204 

and 

k(l - LY) = b . F . A*-‘. W’bl 

Equations (zo), which correspond to the price-setting 
computing center, may be obtained from eq. (14) by 
replacing k with k(l - a): The effect of computing cen- 
ter self-profit maximization is equivalent to “discount- 
ing” users’ (net) valuations of computing services by a 
factor of (1 - a). The more inelastic the demand curve, 
the greater is (Y and the more effective is this “discount- 
ing,” Intuitively, this follows since the computing cen- 
ter’s “monopoly power” increases as demand becomes 
more inelastic. 

As a numerical illustration, consider the case where 
a! = %. The net-value maximizing utilization solves 

k2 = v . b . f’(p) (214 

and the optimal capacity is given by 

p = k2p/b2. (2lbl 

If the computing facility operates as a profit center, we 
have 

k2 = 4v . b . f’(p) (224 

p = k2p/(4b2). (2W 

Clearly, eq. &!a) and eq. (22b) imply lower utilization, 
lower capacity, and lower arrival rate than eq. (21), in 
accordance with the more general results. As one might 
expect, the optimal utilization p increases with k (i.e., 
as the value of the services goes up) and decreases as 
the value of users’ time goes up, both under net-value 
maximization and under computing center profit max- 
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FIGURE 3. Utilization Ratio, p, as a Function of the Value of User 
Time, v, for the M/M/l Queueing System with cx = l/2, k = 1, b = 
1. The upper graph corresponds to the net-value maximizing 
solution; the lower graph corresponds to the profit-center solution. 
The latter case leads to significantly lower utilization ratios. 

imization. Unexpectedly, utilization goes down as the 
capacity cost, b, increases.” 

The behavior of the utilization ratio p as a function of 
the value of users’ time v is shown in Figure 3 for the 
M/M/l queueing system (the behavior for the M/E,/1 
system is similar). The figure corn ares the net-value 
maximizing solution, p = 1 - J-+ v . b/k , to the 
profit-center maximizing solution, p = 1 - 2&37i7, 
for a fixed set of parameters (k = 1, b = 1). As v in- 
creases from zero to unity, p goes down from full utili- 
zation to zero utilization. Figure 3 clearly demonstrates 
the effect of “overstating” the value of users’ time un- 
der the profit-center structure. This effect is quite sig- 
nificant, and the resulting reduction in the arrival rate 
is even more significant since X = p . p, hence the 
reduction in p further amplifies the reduced capacity. 

It is often suggested that “the profit-center approach 
is probably a superior means for motivating the man- 
agement of the computer facility” since “not only is 
there motivation to hold costs down, but also to provide 
quality services” [4 (p. 48)]. In a business environment, 
however, data sharing, as well as security and integra- 
tion requirements, inhibit the use of outside facilities 
and enhance the monopoly power of the corporate 
computing center. Our results demonstrate that the 
presence of queueing effects significantly aggravates the 
problem of monopoly pricing since the profit-center 
structure creates incentives to significantly reduce both 
the available capacity and its relative utilization. For 
example, comparing eq. (21) and eq. (2~3, we note that 
for any given relative utilization p, the capacity under 
the profit-center structure will be one quarter of the 
net-value maximizing capacity. Furthermore, the rela- 

16This follows from the fact that the value function increases only as ~6 
while the capacity cost is linear in JL Thus, as the marginal capacity cost goes 
up. X should decline by proportionately more than JJ to maintain the balance. 
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tive utilization of the (lower) capacity of the profit cen- 
ter will be significantly below the net-value maximiz- 
ing level of utilization. Thus, our results suggest that 
while a profit-center structure could provide high qual- 
ity services by significantly reducing expected turn- 
around time, this is achieved by reducing quantity to a 
level which is far below the net-value maximizing 
level. Thus, the reluctance to organize the computer 
center as a profit center, manifested, for example, by 
Nolan’s (201 findings, may well be justified. 

6. CONCLUDING REMARKS 
This article has incorporated queueing effects to the 
microeconomics of computing center management. Al- 
though one might expect these effects to result in some 
minor modifications to the usual pricing methodology, 
we have shown that in fact the queueing effects are 
quite important, both quanti-tatively and qualitatively. 
Our results suggest a method.ology that could help 
guide the data processing manager in setting price and 
capacity, and could be useful in presenting his case to 
higher-level management. Studying the interrelation- 
ships between the financial responsibility assigned to 
the data processing manager and the effects of users’ 
delay cost on price, capacity, and utilization, we dem- 
onstrate that some common maxims can be misleading. 
In particular, we suggest that. maximizing the net value 
of computer services to the organization as a whole 
leads (under standard assumptions) to a deficit, and 
that cost recovery will lead to under-utilization of 
available resources. We demonstrate that organizing 
the computing center as a profit center leads to a sig- 
nificant under-investment in capacity, coupled with 
significant under-utilization of this capacity; in effect, 
the profit center “overstates” the value of users’ time to 
the detriment of the organization as a whole. We dem- 
onstrate the determination of the optimal level of sys- 
tem utilization, and suggest that given the present mag- 
nitude of hardware costs, optimal utilization may be 
well below levels that were considered reasonable in 
the past. 

Our results offer an analyt:ic methodology for setting 
price and capacity; the implementation of this method- 
ology deserves further discussion. Our methodology is 
well-suited to business data processing systems, which 
are characterized by regularly scheduled tasks which 
undergo explicit cost-benefit analysis as part of the sys- 
tem development process (see [3, 14, 161). Further, in 
such systems the value of users’ time is directly mea- 
surable by the wage rate. The remaining data required 
for direct application of our methodology consists of 
three subsets: usage data, queueing-related data, and 
cost data. Usage data is available in all existing installa- 
tion accounting systems (cf. [9]); it is a prerequisite for 
any pricing scheme. Queueing-related data, including 
utilization and system response to varying utilization, is 
collected and technically evaluated by installation 
managers on a routine basis as part of the capacity 
planning process (cf. [l]). This data is obtained in part 

by processing installation accounting data, and in part 
by direct monitoring; Rose [22] provides a practical re- 
view of methods in use. Cost data is clearly available. 
Thus, in the well-organized data processing depart- 
ment, our methodology can be applied directly by proc- 
essing existing data. 

The situation is markedly different in educational/ 
research installations, where the implementation of any 
pricing scheme is difficult due to the unpredictable na- 
ture of demand, the difficulty of estimating delay costs, 
the heterogeneity of the user population, and the use of 
“funny money” budgets. Assuming that computer ser- 
vices are priced, the price does not involve “funny 
money,” and the value of time may be estimated, de- 
mand information may still be hardly available, imply- 
ing that the marginal value curve of Figure 1 may be 
unknown. In fact, demand information may well be 
rather “soft” even in the business data processing cen- 
ter. In this situation, price may be determined using an 
iterative “trial and error” process: A price pl is set, 
leading to arrival rate X1. As the usage of the system 
stabilizes, V’(X,) may be estimated by measuring the 
expected delay and using eq. (2). Further, the queueing 
characteristics of the system yield &L/8X. Now, if V’(h) 
is significantly greater than the marginal delay cost, 
price should be reduced; if it is significantly below the 
marginal delay cost, price should be increased. This 
process may be repeated until the desired balance is 
achieved. 

The basic model studied in this paper can be easily 
expanded to take into account some additional features 
of computer systems.‘7 One such feature is the problem 
of discontinuous costs, which results from the inability 
to acquire fractions of computers, channels, etc. The 
analysis in Jensen [13] (see also Sharpe [23 (pp. 455- 
459)]) applies here as well. 

An important feature that may be taken into account 
is the cyclical pattern of demand over time. For exam- 
ple, the demand function which prevails overnight is 
usually different from the daily demand function, 
while the capacity of the system is fixed. This implies 
that our model has to be embedded in a standard peak- 
load pricing model (see, e.g., [25, 271). The resulting 
combined model is straightforward, and leads to results 
which are qualitatively similar to the ones presented in 
this article.” 

APPENDIX 

Peak-Load Pricing 
This Appendix demonstrates the extension of our 
methodology to the standard peak-load pricing frame- 
work developed by Steiner [25] and Williamson [27]; 
this methodology is designed to study the problem of 
cyclical changes in demand while capacity is fixed. 
Consider, for example, a workday that consists of two 

“A feature which is not easily taken into account is the finite number of 
potential system users. 

I8 The appendix briefly demonstrates this extension. 
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shifts, 1 and 2 (the generalization to the case of more 
periods is straightforward). Let V,( Xi) be the period-i 
value function, and let Vi be the value of users’ time in 
period (shift) i. Let LYE be the fraction of the workday 
during which the system is in period i. Since capacity 
does not vary from period to period, there is one capac- 
ity parameter p; let C(p) be the cost of capacity per unit 
of time. 

Consider the variable-capacity net-value maximizing 
problem. We assume away all interperiod transitory ef- 
fects. Then, the long-run problem is 

which gives rise to the first-order conditions 

Vi(h) = (V*/P) . fvb/P) 61) 

V6(Xz) = (VZ/P) . f’(Xz/r) WI 

~lx,v;(x,)/P + (YzX2V~(X2)/P = C’(P). (A3) 

Equation (Al) and eq. (AZ) are analogous to eq. (lOa) 
(noting that dL/aX = f’(X/r)/& while eq. (A3) is analo- 
gous to eq. (11). Equations (Al)-(A2) demonstrate that 
once capacity has been determined, the procedure of 
Figure 1 may be applied in each period separately to 
determine price (and utilization). Equation (A3) is a 
straightforward generalization of eq. (11) for determin- 
ing the capacity of the system. 

Using this analogy, our qualitative results carry over 
to the peak-load pricing model. As an example, we 
demonstrate the derivation of the budget equation (see 
Section 4). Letting C(p) = b . p and substituting V[(Xi) = 
pi + vi . Wi for i = 1, 2 in eq. (A3), we obtain 

P . b = alX~(p, + VIWI) + cuzXz(pz + VZWZ.) 

or 

p . b = aIX,pI + a&p2 + cujvlLj + agJ.2 (A4) 

which is clearly analogous to eq. (22) and states that, as 
in Section 4, 

expected cost 

= expected revenue + expected delay cost. 

Thus, the discussion of Section 4 follows. In particular, 
full computing center cost recovery is undesirable. 
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