Local Network Effects, Rationality and The Structure of Technology Networks

Arun Sundararajan New York University

How I got started on this research

How does one optimally price IT-based products?

- Unusual cost structure
- Threat of digital piracy
- Presence of (mostly) positive network effects

How I got started on this research

How does one optimally price IT-based products?

- Unusual cost structure
- Threat of digital piracy
- Presence of (mostly) positive network effects
 - Network effects depend on individual usage, may be heterogeneous in value across customers
 - Nonlinear pricing and type-dependent network effects (2004)
 - Network effects, nonlinear pricing and entry deterrence (2005)

Other aspects of network effects (that seem to matter)

- Agents often are not capable of (or interested in) forming rational expectations which are fulfilled
 - They don't have enough information about the preferences of other agents
 - They don't have the ability to compute a rational expectations equilibrium even if they did have the information
 - They don't pay attention to every product all the time
 - They base their beliefs on "local" information
- Adoption is often gradual and "viscous", rather than being instantaneous
 - The realized dynamic process of adoption often determines
 eventual outcomes

Other aspects of network effects (that seem to matter)

- Network effects are often "local"
 - Interpersonal communication technologies, business to business technologies, online marketplaces...
- The structure of underlying social or business networks affects the adoption of network goods
 - An agent's "local" network affects their value from adoption...
 - ...but so does the structure of the rest of the social network
 Local networks are connected
 - One's neighbors' local networks affect one's adoption
 - Structure of the "adoption network" (or technology network) depends on the structure of the underlying social network

My research questions

- How is the adoption of a technology which displays network effects affected by:
 - The extent to which the network effects are local
 - The extent to which their value differs across potential adopters
 - The structure of an underlying social or business network
 - The "boundedness" of consumer rationality
- What can one infer about each of these from the observed structure of an adoption network?
- What are the implications of a model of this kind for:
 - Optimal price paths for new network goods
 - Choosing how connected targeted early adopters should be
 - The benefits of mandated IT standards in an organization, or in an inter-organizational supply network
 - The social optimality of universal access to a technology

Models of networks: a framework(?)	
Network effects in economics	"Science of networks" models
Network effects are homogeneous Network effects are "global" Social network is complete Agents are unboundedly rational Adoption is instantaneous Adoption cost is strategic (price)	Network effects are homogeneous Network effects are local Social network is complete Agents are myopic Adoption is gradual (discrete) Adoption cost is constant (zero)
Local network effects	Dynamic pricing of network
 Network effects are <u>heterogeneous</u> Network effects are <u>local</u> Social network is <u>any graph</u> 	 Network effects are heterogeneous Network effects are "global" Social network is complete

- Agents are unboundedly rational
- Adoption is instantaneous
- Adoption cost is constant (but can be a one-shot strategic variable)
- undedly rational ntaneous constant (but can the functional to the functional to the functional to the functional the functiona
 - Adoption is grannar (continuous)
 Adoption cost is strategic and
 varies over time

Adoption networks: another example Orgree of a node: number of other nodes a node is connected or (or number of edges orginating from the node) Orgree distribution of a network: Fraction of nodes in a network that have a particular degree, as a function of degree

Local network effects

- Agents in this kind of network generally have:
 - different local networks
 - perfect information about the structure of their local network
 - some information about the structure of the other local networks they belong to (their neighbors' local networks)
 - very little or no information about the exact structure of the rest of the social network
- These agents make their adoption decisions based on their local networks, and this information.

A model of local network effects

- Set of potential customers $N = \{1, 2, 3, ..., n\}$
- Single homogeneous network good that costs *c*
- Customers connected by an underlying social network modeled as an instance of a random graph (more on this soon).
- Each customer has:
 - A neighbor set G_i
 - A degree *d_i* (number of neighbors)
 - A valuation type $\boldsymbol{\theta}_i$ (measure of adoption complementarity)
- Each customer makes an adoption choice $a_i \in \{0,1\}$
- Payoff from adoption for customer *i*:

$$a_i[u(\sum_{j\in G_i}a_j, \theta_i) - c]$$

More generally formulated in the paper

Where the social network comes from

$$\begin{split} N &= \{1,2,3,...,n\} \quad \Gamma_i = 2^{N \setminus \{i\}} \\ \text{Set of graphs:} \quad \Gamma \subset \Gamma_i \times \Gamma_2 \times ... \times \Gamma_n \\ \text{Distribution over this set:} \quad \rho : \Gamma \to [0,1] \\ \text{Drawing from this distribution yields } G \end{split}$$

Restrictions on the social network (r)

For each x in D, denote

 $\Gamma_j(x) =$ subset of Γ_j such that for each $X \in \Gamma_j(x)$, $|X| \models x$

Restrict the distribution over ${\bf r}$ as follows:

For each *i*, for each $j \in G_i$, $\Pr[G_j \in \Gamma_j(x) | G_i, \theta_i] = q(x)$

For each *i*, for each $j \notin G_i$, $\Pr[G_i \in \Gamma_i(x) | G_i, \theta_i] = \hat{q}(x)$

Generalizes to posteriors conditional on degree Admits generalized random graphs, standard models of "small world" networks

Sequence of the game

- Nature draws θ_i for each *i*, draws $G \in \Gamma$
- Each agent *i* observes their type
- Each agent *i* chooses either to adopt $(a_i=1)$ or not $(a_i=0)$
- Payoffs are realized

Information

- After each agent realizes their neighbor set and type:
 - They know the exact structure of their local network
 - They have very little information about the structure of the rest of the network
 - Posterior $\hat{q}(x)$ on degree of non-neighbors
 - They have inexact (but better) information about the structure of the local networks they belong to
 - Posterior q(x) on degree of neighbors
 - They know their $\boldsymbol{\theta},$ do not know anyone else's

Equilibria

 Each symmetric Bayes-Nash equilibrium involves a threshold strategy:

$$s(d_i, \theta_i) = \begin{cases} 0, & \theta_i < \theta^*(d_i) \\ 1, & \theta_i \ge \theta^*(d_i) \end{cases}$$

with threshold $\theta^* = [\theta(1), \theta(2), ..., \theta(m)]$

- "No adoption" is always an equilibrium for pure network goods
- The equilibria can be Pareto ordered: $\Theta^* = \{ \theta^A, \theta^B, ... \}$

 $\theta^A < \theta^B < \dots$

Main theory results

 The ordering of equilibria is based on the equilibrium probability of neighbor adoption

$$\lambda(\theta) = \sum q(x) \left[1 - F(\theta(x)) \right]$$

- "Higher" equilibria strictly Pareto -dominate lower ones, and therefore, there is a best equilibrium, which has the highest value of $\lambda(\theta^*)$
- Each fulfilled expectations outcome with a local expectation λ of neighbor adoption has a corresponding Bayes-Nash equilibrium with $\lambda(\theta^*) = \lambda$
 - Coordinating adoption may be simpler if it is (a) local and (b) based on a simple parameter
- Greatest equilibrium is "weakly" coalition proof: establishes a basis for stability in the standard model

The structure of adoption networks

Consider a generalized random graph with degree distribution p(x), and moment generating function (MGF)

$$\Phi_p(w) = \sum_{w = 0} p(x) w^{x}$$

For identical $\theta,$ and for a threshold degree $\delta^*\!\!,$ the MGF of the degree distribution of the adoption network is

$$\Phi_{\alpha}(w) = \Phi_{p}[1 - \overline{Q}(\delta^{*}) + w\overline{Q}(\delta^{*})]$$

where

$$\overline{Q}(x) = \Pr[d_j \ge x \mid j \in G_i] = \sum_{j=x}^m q(x)$$

Summary: Models of networks	
"Science of networks" models	
 Network effects are homogeneous Network effects are local Social network is complete 	
 Agents are myopic Adoption is gradual (discrete) Adoption cost is constant (zero) 	
Dynamic pricing of network	
Network effects are heterogeneous Network effects are "global" Social network is complete Agents are hounded/urational (myopic, stubborn, combination) Adoption is gradual (continuous) Adoption cost is strategic and varies over time	

Summary of results

- Simple way of modeling adoption of a technology with local network effects as a game of incomplete information between agents connected in an underlying social network
- This game has at least one (and generally many) symmetric Bayes-Nash equilibria in pure strategies
 - All equilibria involve generalized threshold strategies (a threshold degree associated with each value of the agent's "strength" of network effect)
 - These equilibria can be strictly Pareto ranked, based on a simple parameter: the probability a neighbor might adopt
 - One-to-one mapping between equilibria of the game and "fulfilled expectations equilibria" with local expectations

Summary of results

- A simple closed-form expression that describes the structure of an adoption network in terms of the structure of the social network (and vice versa)
- Some answers to other questions
 - Monopoly pricing is generally higher than a standard model that ignores network structure would predict
 - A monopolist always gives free versions to a fraction of their customers (and if possible, would target low-degree customers rather than highly connected customers)
 - The social optimality of universal access (or the optimality of mandated IT standards) relies on social/business networks not being too clustered.

Summary of related results

In a model of adoption with "boundedly rational" expectation formation, and bounded attention to changes in prices:

- For the corresponding model with unboundedly rational consumers: constant optimal price.
- This rational expectations equilibrium price is never a steady state of the optimal dynamic pricing policy
- When customers are myopic, for a range of forms of customer heterogeneity, the optimal price path is a target policy:
 - Price at zero until a critical mass is reached ("bargains")
 - Set a steady state price, higher than the price predicted by the rational expectations model, after critical mass is reached ("ripoffs")
- This result generalizes to
 - Mixtures between myopic and unboundedly rational
 - Mixtures between myopic and "stubborn" (for at least one example)

