Price Screening with Network Effects and Entry Deterrence

Arun Sundararajan
New York University

2004 North American Summer Meeting of the Econometric Society
June 20th, 2004

Motivation
Some examples of network goods and their drivers of network effects

- Microsoft Windows
 - File compatibility
 - Applications software
- Ability to trade on eBay
 - Liquidity
 - Supporting marketplace services
- Oracle Database
 - Software tools
 - Qualified database administrators

Motivation
In standard models of network goods
- Each customer buys one unit
- Network value depends on adoption = # of customers
- Network value is constant across customers

In reality, the usage of many network goods varies across different customers
- Number of OS licenses (Windows)
- Trading frequency (eBay)

Moreover, the network value of these goods
- Depends on total usage across customers, and not merely the number of customers
- May also depend on individual usage
- May vary across customers, even at the same levels of individual and total usage

Summary
- Model monopoly nonlinear pricing of network goods
 - Network value depends on total usage
 - Network value for each customer may depend on their individual usage
 - Marginal network value may vary across customers
- Characterize optimal pricing schedules
 - Existence of fulfilled-expectations contract
 - Uniqueness of optimal contract
 - Variation in properties with network value
- Analyze welfare properties of contracts
 - Surplus division between firm/customers
 - Surplus distribution across customers
- Study effects of entry deterrence
 - Changes in pricing
 - Changes in welfare properties

Some related work
- Monopoly models of network goods
- Single-dimensional monopoly price screening
- Empirical estimates of network effects
 - Databases (Gandal 1994, 1995)
 - Spreadsheets (Gandal 1995, Brynjolfsson and Kemerer 1996)
 - Word processing software (Grohn 1999)
 - Networking equipment (Forman 2001)
Model
- Monopoly seller of a network good
- Continuum of heterogeneous customers, indexed by type \(\theta \) distributed as \(F(\theta) \) with \(f(\theta) > 0 \), \(F(\theta) \) nondecreasing
- Utility functions of customer type \(\theta \): \(W(q, \theta, Q) \)
 - \(q \): individual usage of customer
 - \(Q \): gross usage across all customers
- Key properties of \(W(q, \theta, Q) \)
 - Individual usage: \(W_1(q, \theta, Q) < 0 \), \(W_2(q, \theta, Q) > 0 \)
 - Gross usage: \(W_1(q, \theta, Q) > 0 \), \(W_3(q, \theta, Q) > 0 \)
- Intrinsic value function: \(U(q, \theta) = W(q, \theta, Q) \)
- Network value: \(W(q, \theta, Q) - U(q, \theta) \)

Base case: \[W(q, \theta, Q) = U(q, \theta) \]

- Optimal FE contract exists if \(W(\theta) \) is bounded, is unique if \(w_1(Q) < - U_1(q, \theta) \)
- Consumption \(q(\theta) \) increases for a positive fraction of types, may decrease for lower types
- Surplus distribution is skewed towards higher customer types
- Trade-off between price discrimination and value creation

Solution: \[W(q, \theta, Q) = U(q, \theta) + qw(\theta, Q) \]

- Further accentuates the tradeoff between price discrimination and value creation

Contract: quantity-price pairs \(q(\theta), t(\theta) \)
- Feasible: IC and IR
- Optimal: Given expectation of gross consumption \(Q \), maximizes profits among all feasible contracts
- Optimal fulfilled-expectation: Optimal contract for \(Q \) under which actual consumption \(\int q(\theta)dF(\theta) = Q \)

Sequence of events
- Seller posts contract
- Customers form expectation \(Q \) of gross consumption
- Based on type \(q \) and expectation \(Q \), each customer chooses individual consumption \(q \) to maximize surplus
- Seller, customers get payoffs

Base case contract \(q^0(\theta), \tau^0(\theta) \) is unique

All results illustrated for two types, for better intuition
Entry deterrence

- Incumbent monopolist
 - Customers get both intrinsic value and network value from incumbent product
- One or more potential entrants
 - Entry cost = 0
 - If entry occurs, customers who purchase get just intrinsic value from product
 - Collapses some 'dynamic' aspects of an incumbent's advantage into a static model
- Monopolist prices to deter entry, by assumption
- Problem reduces to monopoly pricing with type-dependent participation constraints

Example

\[W(q, \theta, Q) = U(q, \theta) + qw(\theta) - \theta + U[q] \]

Example with entry deterrence

- With an entry threat, usage \(q^*(\theta) \) is either
 - exactly the same as it was without, or
 - adjusted upwards for a subset of lower types
- Monopolist profits fall, customer surplus increases
- Outcome is not efficient
 - inefficiently low usage by all types
 - ...but potentially higher total surplus than if entry actually occurs

Summary

- Existence, uniqueness conditions for nonlinear pricing with network effects
- Changes in usage induced by different network effects
 - Just \(Q \): No changes in usage
 - Both \(Q \) and \(q \): Increase in usage across all types
 - \(Q \), \(q \) and customer type: Potential further downward distortion of usage of lower types, below levels in absence of network effects
- Further changes in usage induced a costless entry threat
 - May increases usage for lower types, does not affect usage for a subset of higher types, mitigates downward distortion
- Network effects (and/or an entry threat) generally improve equity in surplus distribution across different customer types
- Threat of entry can result in socially superior outcomes than actual entry, socially efficient outcome in special cases