Managing Digital Piracy: Pricing and Protection Strategies

Arun Sundararajan
New York University

4th ZEW Conference on the Economics of Information and Communications Technologies
July 3rd, 2004

Digital goods are easy to pirate

- Software piracy rates are still very high
 - Eastern Europe: 71%
 - Latin America: 55%
 - Asia/Pacific: 55%
 - Middle East/Africa: 49%
 - Western Europe: 35%
 - North America: 24%
- Music, digital video, electronic textbooks, research, artwork, ...

Piracy is impossible to eliminate

- Digital goods are easily replicated, distributed, stored
- Inferior substitutes can always be created
- It is hard to enforce legal deterrents
- Technological deterrents are eventually hacked (at least partially)

Digital piracy needs to be effectively managed through a combination of pricing and time-varying technological deterrence

Summary of key results

Price screening in the presence of digital piracy
- Optimal pricing schedule is a combination of two simpler schedules:
 (a) Zero-piracy pricing schedule (adjusted downward)
 (b) Piracy-indifferent pricing schedule
- Piracy can induce short-term increases in total surplus from legal usage

Choice of appropriate levels of technology-based protection
- In the absence of price-discrimination: technologically-maximal level
- When price discriminating: strictly lower
 - Trade-off between deterrence and ability to price-discriminate
- Responses to weakening of underlying protection technology can be
 - Increase protection level, reduce prices
 - Reduce protection level, sometimes increase prices
 - Suggests need to preemptively over/under protect

Research agenda

- Price screening in the presence of digital piracy
 - Structure of optimal nonlinear pricing schedule
 - Variation in structure of schedule at different levels of piracy
 - Effects of piracy on seller profits, consumer surplus and total surplus

- Appropriate levels of technology (DRM) protection
 - Profit-maximizing protection levels with/without price discrimination
 - Optimal pricing and technology responses to DRM hacking

Recap: Nonlinear pricing

- If consumer surplus > d[1](q), then customer type 1 buys legal good
Seller, products and customers

- Monopoly seller of information good, used in varying quantities
- Legal good: quality \(v \), pricing chosen by seller
- Pirated good: quality \(x \), free

Heterogeneous customers
- Indexed by type \(t \in [0,1] \) distributed as \(F(t) \) with \(f(t) > 0 \), non-increasing inverse hazard rate
- Value from legal good: \(vU(q,t) \)
- Value from pirated good: \(xU(q,t) = q_x - q^2 \)
- Therefore, reservation utility
\[U^*(q,t) = \max_v vU(q,t) = xU(q,t) \]

Pricing in the absence of piracy

- "Standard" nonlinear schedule of prices and usage
- Prices are concave in quantity
- All customer types with \(q^{2T}(q,t) > 0 \) get positive surplus

Optimal pricing with digital piracy

When \(j > \frac{\beta}{\alpha} \):
- Pricing schedule is comprised of two distinct segments
 - piracy-indifferent (lower)
 - adjusted zero-piracy (higher)
- Customers who were priced out of the market are now included
- At a higher level of piracy \(s \):
 - piracy-indifferent segment expands to include more types
 - prices fall for higher segment

Optimal pricing with digital piracy

The presence of digital piracy:
- decreases seller profits
- increases total surplus
- increases consumer surplus

Each of these effects is higher at higher levels of piracy
Digital rights management (DRM)

Premise:
- DRM allows sellers to control the level of piracy s, to some extent
- Implementing DRM always involves some form of degradation of the quality of the legal good

Endogenous protection:
- p: Level of DRM-based protection that the seller chooses
- $v(p)$: Quality of legal good at level of protection p
- $s(p)$: Quality of pirated good at level of protection p

Digital rights management

Assumptions about $v(p)$ and $s(p)$
- $v(p) > s(p)$: The seller can make a profit
- $v(p) < s(p)$: DRM ‘manages’ rights by restricting them
- $v_s(0) < v_t(0)$: The DRM technology is effective, at least initially
- $v_s(\theta) < s_t(\theta)$: The DRM technology has diminishing returns

Sequence of events
- Quality functions $v(p)$ and $s(p)$ becomes known to customers and seller
- The seller announces pricing scheme $q(\bar{q})$, $x(\bar{x})$, and DRM-based protection level p
- Customer types in set \bar{x} purchase the legal good, others use the pirated good
- Customers and seller receive their surplus and profits

$\Theta = \{ q : r(p) = q(\bar{q}) \cdot v(\bar{q}) > 0 \}$

DRM: Technologically-maximal protection

- Level of DRM protection which maximizes $v(p) - s(p)$
- Maximizes the ‘effectiveness’ of the DRM technology
- Optimal level of protection when seller cannot price-discriminate

DRM: Profit-maximizing protection

- Level of DRM protection p^* at which profits are maximized
- Always strictly lower than the technologically-maximal level p^*

$\eta(\bar{p}) = \eta_0 - \frac{2x(\bar{p})}{\pi} - \frac{2x^2(\bar{p})^2/\pi}{2}$

Responding to weakening DRM technology

- As a DRM technology gets hacked, $v(p)$ increases over time
- This is modeled as a continuous variation: $s_t(p)$, with $s_t(p) > 0$
- Sign of $s_t(p)$ influences direction of technological and pricing responses
Responding to weakening DRM technology

When $s_{12}(t) < 0$
- p^* increases over time
- Total prices reduce across all customer types
- There may be reason to preemptively overprotect

When $s_{12}(t) > 0$
- p^* reduces over time
- Total prices may either increase or reduce
- There may be reason to preemptively underprotect

Summary of key results

Price screening in the presence of digital piracy
- Optimal pricing schedule is a combination of two simpler schedules:
 (a) Zero-piracy pricing schedule (adjusted downward)
 (b) Piracy-indifferent pricing schedule
- Piracy can induce short-term increases in total surplus from legal usage
- Choice of appropriate levels of technology-based protection
 - In the absence of price-discrimination: technologically-maximal level
 - When price discriminating: strictly lower
- Trade-off between deterrence and ability to price-discriminate
- Responses to weakening of underlying protection technology can be
 - Increase protection level, reduce prices
 - Reduce protection level, sometimes increase prices
 - Suggests need to preemptively over/under protect

Moving ahead...

- Legal responses to piracy lag technology in a disturbingly significant way
- Technology determines the effective behavior of users as well as creators
- Modeling technology as the determinant of behavior is realistic but has potentially negative policy implications

Open issues
- Long-term effects on innovation and quality of legal goods
- The effect of piracy-induced usage externalities
- The impact of network effects

Moving ahead…