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Abstract

Most traditional clustering work assumes that the data is provided without measurement

error. Often, however, real world data sets have such errors. Often one can obtain estimate

of these errors. In the presence of such errors, popular clustering methods like k-means and

hierarchical clustering may produce un-intuitive results.

The fundamental question that this paper addresses is: “What is an appropriate cluster-

ing method in the presence of measurement errors associated with data?” In the first half of

the paper we propose using maximum likelihood principle to obtain an objective criterion

for clustering that incorporates information about the errors associated with data. The

objective criterion provides a basis for several clustering algorithms that are generalizations

of the k-means algorithm and Ward’s hierarchical clustering. The objective criterion has

scale-invariance property so that the clustering results are independent of units of mea-

suring data. We also provide a heuristic solution to obtain the correct number of clusters

which in itself is a challenging problem. In the second half, we focus on two applications

of error-based clustering: (a) regression coefficients clustering and (b) seasonality estima-

tion in retail merchandizing, where it outperforms the k-means and Ward’s hierarchical

clustering.
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1 Introduction

1.1 Motivation

Clustering is a fundamental and widely applied methodology in understanding structure in large

data sets. General assumption is that the data is provided with no measurement error. However,

in certain applications such as clustering of regression coefficients, and seasonality estimation

in retail merchandizing (we elaborate on these applications in Sections 5 and 6, respectively),

data to be clustered is not directly observable and a statistical method generates the data. For

example, if one wishes to cluster various geographical regions based on household income and

expenditure, the data for geographical regions could be estimates of average household income

and average expenditure. A sample average by itself is inadequate and can be misleading unless

the sampling error for each region is negligible. Sampling error, which can be estimated as the

standard deviation of the sample average, may be very different for different regions.

In this paper we show that these errors are an important part of data that should be used

in clustering. In contrast to standard clustering methods, in a clustering method that considers

error information, two points that differ significantly in their observed values might belong to the

same cluster if the points have large errors whereas two points that do not differ much in their

observed values might belong to different clusters if they have small errors. The above argument

is illustrated in Figure 1.
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Figure 1: Data points along with errors

Four points A,B, C and D are the observed data points and the ellipses represent Gaussian

errors associated with the points. A clustering method that does not consider errors will put A

and C in one cluster and B and D in another, whereas a clustering method that recognizes errors
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will cluster A and B together and C and D together. In this example, error-based clustering

makes more sense because the x values have large error in their measurement, whereas the y

value measurements are accurate and should therefore dominate the clustering decision.

The following simulation experiment further illustrates the importance of error information

in clustering. Four points in one-dimension were obtained as sample means for four samples, two

from one distribution, and two from another as shown in Figure 2. Our goal is to cluster the four

points into two groups of two each so as to maximize the probability that each cluster represents

two samples from the same distribution.

4.8 5.4 5.6 5.8 6.05.0 5.2

A B C D

Figure 2: Four sample means in one dimension

Any clustering method would put A and B in one cluster, and C and D in another. Now we

obtain additional information that the two samples on the left were samples with 10,000 points

each, and the samples on the right were two samples with 100 points each. Figure 3 shows the

sample means along with standard errors around them. Note that small circles on the left means

larger data sets and more certainty in the sample means. Using the error information we get the

following likelihood table 1 for three possible clusterings in this case.

5.4 5.6 5.8 6.05.0 5.24.8

B DCA

Figure 3: Four sample means along with errors

1The likelihood is calculated using equation (3).
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Table 1: Clustering likelihood

Clustering Likelihood

{A,B}, {C,D} 551.4

{A,C}, {B,D} 8812.2

{A,D}, {B,C} 7524.9

In the simulation study, A and C were drawn from the same distribution, and B and D were

drawn from another distribution, which is the maximum likelihood clusters in Table 1. There is

no way to discover the true clustering unless the error information is considered.

In practice, the structure of errors could be far more complex than the ones shown in the above

examples. In this paper we model errors as coming from multivariate Gaussian distributions,

which is sufficiently general and works well in practice.

1.2 Contributions Of This Paper

The fundamental question addressed in this paper is: “What is an appropriate clustering in the

presence of errors associated with data ?” The traditional clustering methods, like the k-means

method and the hierarchical clustering methods, are inadequate in handling such errors. We

make the following contributions in this paper.

• Assuming Gaussian errors, we define an appropriate clustering model and derive an objec-

tive criterion that incorporates the information in data as well as the information in error

associated with data.

• The objective criterion provides a basis for new distance functions that incorporate er-

ror information and are generalizations of the Euclidean distance function. The distance

functions are used to develop clustering methods for hierarchical clustering as well as for

partitioning into a specified number of clusters. The methods are generalization of the pop-

ular Ward’s hierarchical clustering [17] and the k-means algorithm [10]. We also provide a

heuristic method to obtain the correct number of clusters.
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• We show the effectiveness of our technique in two applications: (a) regression coefficients

clustering and (b) seasonality estimation in retail merchandizing. For both the applications,

first we provide background on how to obtain error estimates from data and then present

empirical results for various clustering methods. Although we examine these two applica-

tions in this paper, our approach is very general and can be applied in many clustering

applications where measurement errors are significant.

1.3 Related Work

Approaches to clustering include statistical, machine learning, optimization and data mining

perspectives. See [10, 11] for a review. In recent years probability models have been proposed as

a basis for cluster analysis [1, 4, 7, 9, 15]. Methods of this type have shown promise in a number

of practical applications [1, 4, 7]. In this approach, the data are viewed as coming from a mixture

of probability distributions, each representing a different cluster. Our work is similar to the work

by Banfield and Raftery [1], and Fraley [7] on model-based clustering. Their approach is based on

maximizing the likelihood when data comes from G different multivariate Gaussian populations.

We extend their model by explicitly modelling error information in the clustering technique. We

also differ from their model in that instead of modelling the populations as multivariate Gaussian,

we model the errors as multivariate Gaussian. This leads to a different objective function that

provides a basis for various error-based clustering algorithms that are developed in this paper.

We have come across only one publication [5] that explicitly considers error in data. Their

method considers uniformly distributed spherical errors and is a modification of the k-means

algorithm. We consider multivariate Gaussian errors and provide a formal statistical procedure

to model them.

The rest of the paper is organized as follows. In Section 2, we define a maximum likelihood

model for error-based clustering. In Section 3, we develop a hierarchical clustering algorithm

using the above model. In Section 4, we present a generalization of the k-means algorithm for

data with measurement errors. In Section 5, we describe the application of clustering in regression

and present experimental results on both simulated data as well as real data. In Section 6, we

provide a brief background on seasonality estimation problem and present experimental results
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on real data from a major retail chain. Finally in Section 7, we present concluding remarks along

with future research directions.

2 Error-based Clustering Model

We assume that n points, x1, ..., xn, are given in Rp and there is an observation error associated

with each data point. We assume that the errors are Gaussian so that xi ∼ Np(µi, Σi) where µi

is a vector in Rp and Σi is a p × p covariance matrix. Further we assume that while µi is not

known, Σi is known for all i. We wish to partition the data into G clusters, C1, C2, ..., CG, such

that all data points that have the same true mean (same µi) belong to the same cluster.

Let Sl = {i|xi ∈ Cl}. Note that Si ∩ Sj = φ, i 6= j and S1 ∪ S2 ∪ ... ∪ SG = {1, 2, ..., n}.

Lemma 1 Given a cluster Cl, the maximum likelihood estimate (MLE) of the mean of the cluster

is given by

x̂l = [
∑
i∈Sl

Σ−1
i ]−1[

∑
i∈Sl

Σ−1
i xi] (1)

and the covariance matrix of x̂ is given by

Σ̂l = [
∑
i∈Sl

Σ−1
i ]−1. (2)

We refer to x̂, which is a weighted mean of a set of point, as Mahalanobis mean of the points.

Proof : Let us denote the common mean for the observations in Cl by a p-dimensional

vector θl so that µi = θl for ∀i ∈ Sl.

Given a clustering C along with sets S, the likelihood of the observed data is

G∏

l=1

∏
i∈Sl

(2Π)−
p
2 |Σi|− 1

2 e−
1
2
(xi−θl)

tΣ−1
i (xi−θl) (3)

The log likelihood is

G∑

l=1

∑
i∈Sl

−p

2
ln(2Π)− 1

2
ln |Σi| − 1

2
(xi − θl)

tΣ−1
i (xi − θl)

= −1

2
{np ln(2Π) +

n∑
i=1

ln |Σi|+
G∑

l=1

∑
i∈Sl

(xi − θl)
tΣ−1

i (xi − θl)}
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Since the first two terms are constant, maximizing the log likelihood is equivalent to

min
S1,S2,...,SG

G∑

l=1

∑
i∈Sl

(xi − θl)
tΣ−1

i (xi − θl) (4)

where minimization is over all possible partitions of S = {1, 2, ..., n} into G parts. Let us

denote the function being minimized in (4) by f(S1, S2, ..., SG). For any l ∈ {1, 2, ..., G}, setting

df(S1,S2,...,SG)
dθl

= 0 gives
∑
i∈Sl

Σ−1
i (xi − θl) = 0

which provides the MLE of θl as

x̂l = [
∑
i∈Sl

Σ−1
i ]−1[

∑
i∈Sl

Σ−1
i xi]. (5)

x̂l is a linear combination of xi’s, therefore it follows a Gaussian distribution as below

x̂l ∼ Np(θl, Σ̂l). (6)

where

Σ̂l = [
∑
i∈Sl

Σ−1
i ]−1. (7)

Lemma 2 An optimal clustering that maximizes the likelihood of the observed data is given by

arg max
S1,S2,...,SG

G∑

l=1

[
∑
i∈Sl

Σ−1
i xi]

t[
∑
i∈Sl

Σ−1
i ]−1[

∑
i∈Sl

Σ−1
i xi] (8)

Proof : Replacing θl by its MLE, x̂l = [
∑

i∈Sl
Σ−1

i ]−1[
∑

i∈Sl
Σ−1

i xi], the optimal clustering

criterion of equation (4) becomes

n∑
i=1

xt
iΣ

−1
i xi −

G∑

l=1

[
∑
i∈Sl

Σ−1
i xi]

t[
∑
i∈Sl

Σ−1
i ]−1[

∑
i∈Sl

Σ−1
i xi]

Since the first term is constant, minimizing it over all partitions is equivalent to

max
S1,S2,...,SG

G∑

l=1

[
∑
i∈Sl

Σ−1
i xi]

t[
∑
i∈Sl

Σ−1
i ]−1[

∑
i∈Sl

Σ−1
i xi]
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3 The hError Clustering Algorithm

3.1 Distance Function

The formulation in equation (8) is a combinatorial problem that cannot be solved in polynomial

time, thus we use a greedy heuristic. The heuristic involves a tree hierarchy where the lowest

level of the tree consists of n clusters, each corresponding to one data point. At successive levels,

a pair of clusters is merged into a single cluster so that there is maximum increase in the value

of the objective function in equation (8). We stop merging clusters when a desired number of

clusters is obtained.

Theorem 3 At an intermediate stage the greedy heuristic combines a pair of clusters Ci and Cj

for which the following distance is minimized

dij = (x̂i − x̂j)
t[Σ̂i + Σ̂j]

−1(x̂i − x̂j). (9)

where x̂i and x̂j are the MLEs of the centers of Ci and Cj respectively, and Σ̂i and Σ̂j are the

associated covariance matrices as defined in Lemma 1.

Proof : Let us denote the objective function in equation (8) by z. If we combine clusters

Ci and Cj then the increase in the value of z is given by

4z = [
∑

l∈Si
S

Sj

Σ−1
l xl]

t[
∑

l∈Si
S

Sj

Σ−1
l ]−1[

∑

l∈Si
S

Sj

Σ−1
l xl]− [

∑

l∈Si

Σ−1
l xl]

t[
∑

l∈Si

Σ−1
l ]−1[

∑

l∈Si

Σ−1
l xl]

− [
∑

l∈Sj

Σ−1
l xl]

t[
∑

l∈Sj

Σ−1
l ]−1[

∑

l∈Sj

Σ−1
l xl] (10)

Let us define the following for the ease of handling notations

yu =
∑

l∈Su

Σ−1
l xl u = i, j. (11)

Tu =
∑

l∈Su

Σ−1
l u = i, j. (12)

Note that T−1
u yu = x̂u and T−1

u = Σ̂u for u = i, j. Also note that Ti and Tj are symmetric

covariance matrices. Using the above notation, we get the following
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−4z = −(yi + yj)
t(Ti + Tj)

−1(yi + yj) + yt
iT

−1
i yi + yt

jT
−1
j yj (13)

= yt
i [T

−1
i − (Ti + Tj)

−1]yi + yt
j[T

−1
j − (Ti + Tj)

−1]yj − 2yt
i(Ti + Tj)

−1yj (14)

= yt
i [(Ti + Tj)

−1TjT
−1
i ]yi + yt

j[T
−1
j Ti(Ti + Tj)

−1]yj − 2yt
i(Ti + Tj)

−1yj (15)

= (T−1
i yi − T−1

j yj)
t[Ti(Ti + Tj)

−1Tj](T
−1
i yi − T−1

j yj) (16)

= (T−1
i yi − T−1

j yj)
t[T−1

i + T−1
j ]−1(T−1

i yi − T−1
j yj) (17)

= (x̂i − x̂j)
t[Σ̂i + Σ̂j]

−1(x̂i − x̂j) (18)

Equations (15), (16) and (17) can be derived using simple matrix algebra. Hence maximizing

4z is same as minimizing the distance, dij = (x̂i − x̂j)
t[Σ̂i + Σ̂j]

−1(x̂i − x̂j), among all possible

cluster pairs Ci and Cj.

This distance function satisfies the standard properties for a dissimilarity measure, namely.

dist(x, y) = dist(y, x)

dist(x, y) ≥ 0

dist(x, x) = 0

dist(x, y) = 0 ⇔ x = y

An interesting property of the proposed distance function is that it is independent of scale. When

we change units of measurement of data, the observed values x’s and corresponding errors Σ’s

are multiplied by the same factor. Therefore, dij is unit-free and scale invariant.

The hierarchical merging of clusters using the above distance function leads to the hError

algorithm. The algorithm turns out to be a generalization of Ward’s method for hierarchical

clustering [17]. When Σi = σ2I for all i, the method specializes to Ward’s method.

3.2 Number Of Clusters

In the hError algorithm, two clusters are combined when we believe that they have the same

true mean. Consider the hypothesis H0 : θi = θj, i.e., the true means of clusters Ci and Cj are
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the same. In other words, we combine Ci and Cj if H0 is true. For a fixed i, j it is easy to show

that the statistic

dij = (x̂i − x̂j)
t[Σ̂i + Σ̂j]

−1(x̂i − x̂j)

follows a Chi-Square distribution with p degrees of freedom [14]. However, the minimum dij over

all i, j pairs does not follow a Chi-Square distribution. Nevertheless, we heuristically use the

Chi-square distribution in the same spirit that the F-distribution is used in step-wise regression

[6]. If we denote the cumulative distribution function of a Chi-Square distribution with p degrees

of freedom at point t by χp(t), then 1 − χp(dij) gives the p-value for accepting the hypothesis.

At 95% confidence, we can stop merging clusters when minimum dij is greater than χ−1
p (0.95).

The clustering algorithm is formally described below.

3.3 hError Algorithm

Algorithm 1: hError

Input: (xi, Σi), i = 1, 2, ...n

Output: Cluster(i), i = 1, 2, ..., G.

for i = 1 to n do

Cluster(i) = {i}
NumClust = n

loop

for 1 ≤ i < j ≤ NumClust do

calculate dij = dist(Cluster(i), Cluster(j)) using equation (9)

(I, J) = arg minij dij

if dIJ > χ−1
p (0.95) then

break

Cluster(I) = Cluster(I) ∪ Cluster(J)

Cluster(J) = Cluster(NumClust)

NumClust = NumClust− 1

return Cluster(i), i = 1, 2, ..., G
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4 The kError Clustering Algorithm

In this section we present an algorithm that is appropriate when we know G, the number of

clusters. It turns out to be a generalization of the k-means algorithm that considers errors

associated with data. Similar to k-means, kError is an iterative algorithm that cycles through two

steps. Step 1 computes centers given a clustering. The center of each cluster is its Mahalanobis

mean. Step 2 reassigns points to clusters. Each point, xi, is reassigned to the cluster, Cl, whose

center, cl, is the closest to xi according to the following formula.

l = arg min
m

dim,

where

dim = (xi − cm)tΣ−1
i (xi − cm) (19)

The algorithm is formally described here.

Algorithm 2: kError

Input: (xi, Σi), i = 1, 2, ...n

G = number of clusters.

Output: Cluster(i), i = 1, 2, ..., G.

Find initial clusters randomly

Step 1:

for i = 1 to G do

ci = Mahalanobis mean of Cluster(i)

Step 2:

for i = 1 to n do

for m = 1 to G do

calculate dim using equation (19)

l = arg minm dim

Reassign xi to Cluster(l).

if Clusters change then

Go to Step 1.
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return Cluster(i), i = 1, 2, ..., G

It is easy to show that the objective function of equation (8) improves in both steps of the

algorithm in each iteration. Finite convergence of kError follows.

5 Application In Regression

We consider the problem of clustering the points in a regression. The standard multiple linear

regression model is [6]

Y = Xβ + ε

where Y is a vector of n observations, X is a known n × p matrix of n p-dimensional vectors,

β is a vector of p unknown parameters and ε is a vector of n zero-mean independent random

variables with variance σ2. Then the usual least squares estimator for β is given by

b = (X ′X)−1X ′Y (20)

The covariance error matrix associated with b is

Σ = σ2(X ′X)−1. (21)

Here σ2 is unknown but can be approximated as below.

σ2 ∼ 1

n− p
(Y ′Y − Y ′X(X ′X)−1X ′Y )

The standard linear regression model assumes that β is same for all data points. On a reasonably

complex domain, it may not be true that all data points have the same regression coefficients.

Consider a simple humidity example.

Humidity =





10 + 5 ∗ temp + ε in winter

20 + 3 ∗ temp + ε in summer

Here β is different during winter and summer. In this case the least squares estimator (equation

(20)) on one year’s data would produce a wrong answer. On such complex domains, it would be

best to partition the data points into clusters so that points within the same cluster have the

same β. Then a separate regression estimator could be obtained for each cluster. [3] proposed a
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month <= April

26 9

17

: Summer

: Winter

Figure 4: Regression Tree for Humidity Example

recursive partitioning of data into a regression tree such that data at each leaf node of the tree

is likely to have common β. Figure 4 shows a regression tree for the humidity example.

The number inside each leaf node is the number of data points at the node. Separate regression

estimator is obtained at each leaf node using equation (20). When an unseen example comes,

first it is assigned to one of the leaf nodes using the test criteria at internal nodes, and then its

value is predicted using the regression estimator at the leaf node.

In the humidity example, if the data is available once every week, then the rightmost leaf

has only 9 data points. A regression estimate using only 9 data points would have large error.

At the same time we notice that there are two leaves that correspond to winter. If we merge

the two leaves the combined data from two leaves would produce better estimate. In general

regression trees have many leaves, some of them might have common β. If we can cluster data

from leaves that have same β, the estimator for a cluster of leaves would have smaller error.

We propose using error-based clustering to form cluster of leaves based on their least squares

regression estimates. Empirically we show that error-based clustering performs better than the

k-means and Ward’s hierarchical clustering in this application.
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5.1 Simulation Data Study

5.1.1 Data Generation

[3] reported regression tree results for an artificial data set affected by noise. In this study

there are ten variables, X1, ..., X10; X1 takes values -1 or 1 and the others uniformly distributed

continuous values from interval [−1, 1]. The generating function for the dependent variable, Y,

is

Y =





3 + 3X2 + 2X3 + X4 + ε if X1 = 1

−3 + 3X5 + 2X6 + X7 + ε if X1 = −1.

where ε is a zero-mean Gaussian random variable with variance 2, representing noise. From 500

training cases, [3] constructed a regression tree with 13 leaves. Using equations (20) and (21),

respectively, we calculate regression coefficient estimate, bi, and associated error matrix, Σi, for

each leaf, i = 1, ..., 13. This constitutes our training data that would be used for clustering.

5.1.2 Clustering Results

It is important to note that the clustering is done on regression estimates, so the input to a

clustering algorithm consists of bi’s and Σi’s. Regression estimates are recomputed for each

cluster of data, which are used for predicting value of an unseen example. First we studied

the effect of standard clustering methods, the k-means and Ward’s hierarchical clustering, that

do not use error information. We found that these clustering methods result in substantial

misclassification (number of data points that are assigned to a wrong cluster). Using hError and

kError the number of misclassifications were significantly smaller and therefore the regression

coefficient estimates were more accurate.

We conducted validation experiment with out-of-sample test data that is also generated using

the method described in section 5.1.1. Training data is used to learn the regression function and

then it is validated on the test data. We repeated this experiment ten times. Table 2 gives

average MSE (Mean Square Error) with different clustering techniques. We also show the results

when no clustering is used (separate regression is used for data at each leaf node, i.e., same as

the method in [3]), and when a single regression is used on entire data. Note that if clusters
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were correct and all regression coefficients were known, the expected MSE would be 2.0, which

is the variance of ε. The third column shows the percentage improvement against using a single

regression on entire data.

Table 2: Clustering result

Clustering Method Average MSE % improvement

hError 3.61 27

kError 3.55 28

k-means 5.54 -12

Ward 5.09 -2

No Clustering 4.59 7

Single regression on entire data 4.93

We see that hError and kError improve the results while other clustering methods make it

worse. In this experiment, using the technique described in section 3.2, hError was able to find

the right number of clusters in every run of the experiment.

5.2 Real Data Study

In this section we apply the error-based clustering to cluster regression coefficients on Boston

Housing data available from the UCI Machine Learning Repository [2]. The data reports the

median value of owner-occupied homes in 506 U.S. census tracts in the Boston area, together

with several variables which might help to explain the variation in median value across tracts.

After removing outliers and correlated attributes we have 490 data points and four explanatory

variables (average number of rooms, pupil/teacher ratio, % of lower-income status population,

and average distance from five major business districts). We conducted 10-fold cross validation

experiment on the data by randomly splitting the data into training and test data. Regression tree

method is used to divide the training data in several subsets. Then various clustering methods

are used to combine subsets of data that have similar regression coefficients. The results are
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validated on the test data. Table 3 reports average MSE and percentage improvement in ten

repetitions of this experiment.

Table 3: Clustering result

Clustering Method Average MSE % improvement

hError 13.81 23

kError 13.59 24

k-means 23.98 -34

Ward 22.61 -26

No Clustering 16.50 8

Single regression on entire data 17.94

We get some improvement in MSE by dividing training data into subsets using regression

tree but clustering of these subsets using error-based clustering improves the result further. Note

that clustering methods that do not consider error information performed worse than using a

single regression on entire training data.

6 Application In Seasonality Estimation In Retail Mer-

chandize

6.1 Seasonality Background [13]

In retail merchandizing it is very important to understand the seasonal behavior in the sales of

different items to correctly forecast demand and make appropriate business decisions. We model

the seasonality estimation problem as a clustering problem in the presence of errors and present

the experimental results when applied to point-of-sale retail data. We were able to discover

meaningful clusters of seasonality whereas classical methods which do not take account of errors

did not obtain good clusters. In the rest of this subsection we provide brief background on
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seasonality in retail industry. We also provide how to obtain initial seasonality estimates and

associated error matrices that would be input to an error-based clustering algorithm.

Seasonality is defined as the normalized underlying demand of a group of similar merchandize

as a function of time of the year after taking into account other factors that impact sales such

as discounts, inventory, promotions and random effects. Seasonality is a weekly numeric index

of seasonal buying behavior that is consistent from year to year. For example, a Christmas

item will have high seasonality indices during the month of December, whereas shorts will have

consistently high seasonality indices during summer and low indices during winter. In a retail

merchandize, there are many different possible seasonal patterns. Practical concerns regarding

logistic complexity require that we handle no more than a few (5-15) seasonal patterns. Therefore,

our goal is to identify a small set of seasonal patterns that model the items sold by the retailer

and relate each item to one of these seasonal patterns.

Considerable work has been done on how to account for the effect of price, promotions

inventory and random effects[12, 16]. In our retail application, weekly sales of an item i are

modelled as products of several factors that affect sales as described in equation (22).

Saleit = fI(Iit) ∗ fP (Pit) ∗ fQ(Qit) ∗ fR(Rit) ∗ PLCi(t− ti0) ∗ Seasit (22)

Here, Iit, Pit, Qit and Rit are the quantitative measures of inventory, price, promotion and ran-

dom effect, respectively, for an item i during week t. fI , fP , fQ and fR model the impact of

inventory, price, promotion and random effect on sales, respectively. PLC is the Product Life

Cycle coefficient which is defined as the sale of an item in the absence of seasonality as well as

the factors discussed above. The shape and duration of the PLC curve depends on the nature of

the item. For example, a fashion item will sell out very fast compared to a non-fashion item as

shown in Figure 5. Saleit, Seasit and PLCi(t− ti0) are the sale value, seasonality coefficient and

PLC coefficient of item i during week t where ti0 is the week when the item is introduced. For

convenience we define the PLC value to be zero during weeks before the item is introduced and

after it is removed. Seasonality coefficients are relative. To compare seasonality coefficients of

different items on the same scale, we assume that sum of all seasonality coefficients for an item

over a year is constant, say equal to the total number of weeks, which is 52 in this case.

In this paper we assume that our data has been pre-processed by using equation (22) to remove
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PLC of a non-fashion item PLC of a fashion item

Figure 5: PLCs for non-fashion and fashion items

the effects of all these non-seasonal factors. We also assume that the data has been normalized

to enable comparison of sales of different items on the same scale. After pre-processing and

normalization, the adjusted sale of an item, Saleit, is determined by the PLC and seasonality as

described below.

Saleit = PLCi(t− ti0) ∗ Seasit. (23)

Since adjusted sales of an item is the product of its PLC and seasonality, it is not possible to

determine seasonality just by looking at the sale values of the item. The fact that items having

the same seasonality pattern might have different PLCs complicates the analysis.

Initially, based on domain knowledge from merchants we group items that are believed to

follow similar seasonality over the entire year. For example, one could group together a specific

set of items that are known to be selling during Christmas, all items that are known to be selling

during summer and not during winter, etc. The idea is to get a set of items following similar

seasonality that are introduced and removed at different points of time during the year. This

set, say S, consists of items having a variety of PLCs differing in their shape and time duration.

If we take the weekly average of all PLCs in S then we would have a somewhat flat curve as

shown in Figure 6. This implies that weekly average of PLCs for all items in S can be assumed

to be constant as shown in Theorem 4.

PLCs of a set of items
introduced and removed at different times

Weekly average of all these PLCs

Figure 6: Averaging effect on a set of uniformly distributed PLCs
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Theorem 4 For a large number of PLCs that have their introduction dates uniformly spread

over different weeks of year, the weekly average of PLCs is approximately constant, i.e.,

1

|S|
∑
i∈S

PLCi(t− ti0) ≈ c ∀t = 1, ..., 52 (24)

Proof : Let us consider a given week, say week t. Since only those PLCs that have starting

time between week t−51 and week t will contribute to the weekly average for week t, we consider

only those PLCs that have ti0 between week t − 51 and week t. Let pl be the probability of ti0

being l. Because of equally likely starting times, pl = 1
52

for l = t− 51, t− 50, ..., t.

E(
1

|S|
∑
i∈S

PLCi(t− ti0)) =
1

|S|
∑
i∈S

E(PLCi(t− ti0))

=
1

|S|
∑
i∈S

t∑

l=t−51

pl ∗ PLCi(t− l)

=
1

52 ∗ |S|
∑
i∈S

51∑

l=0

PLCi(l)

= c

where c is a constant that does not depend on t. The variance of 1
|S|

∑
i∈S PLCi(t−ti0) is inversely

proportional to |S| as in equation (28). If |S| is large, the variance will be small and the weekly

observed values of 1
|S|

∑
i∈S PLCi(t − ti0) will be approximately constant and hence the result.

If we take the average of weekly sales of all items in S then it would nullify the effect of PLCs

as suggested by equations 25-27. Let Salet be the average sale during week t for items in S, then

Salet =
1

|S|
∑
i∈S

Saleit =
1

|S|
∑
i∈S

Seasit ∗ PLCi(t− ti0). (25)

Since all items in S are assumed to have the same seasonality, Seasit is the same for all items in

S, say equal to Seast, i.e.,

Seasit = Seast ∀i ∈ S, t = 1, 2, .., 52. (26)

Therefore,

Salet = Seast ∗ 1

|S|
∑
i∈S

PLCi(t− ti0) ≈ Seast ∗ c t = 1, ..., 52. (27)

19



The last equality follows from Theorem 4. Thus seasonality values, Seast, can be estimated by

appropriate scaling of weekly sales average, Salet.

The average values obtained above will have errors associated with them. An estimate of the

variance in Salet is given by the following equation.

σ2
t =

1

|S|
∑
i∈S

(Saleit − Salet)
2 (28)

The above procedure provides us with a large number of seasonal pattern estimates, one for

each set S, along with estimate of associated errors. Note that each seasonality pattern estimate

is a 52 × 1 vector. The covariance error matrix associated with each seasonality pattern is a

52× 52 diagonal matrix with diagonal entries of σ2
t , t = 1, 2, ..., 52. The goal is to form clusters

of these seasonal patterns based on their estimated values and errors. Each cluster of seasonal

patterns is finally used to estimate seasonality of the cluster. This estimate will have smaller

error than the estimate of each seasonal pattern obtained above.

6.2 Retailer Data Study

In order to investigate the usefulness of our technique in practice, we carried out comparative

analysis on real data from a major retail chain. A retail merchandize is divided into several

departments (for example: shoes, shirts, etc.) which are further classified into several classes (for

example: men’s winter shoes, formal shirts, etc.). Each class has a varying number of items for

which sales data is available. For this experiment we considered only those classes that have sales

data for at least 20 items. The data used consisted of two years of sales data. One year of data

was used to estimate seasonalities. Using these estimated seasonalities, we forecast sales for the

next year and compare it against the actual sales data available for the next year. We considered

6 different departments (greeting cards, books, music and video, toys, automotive, and sporting

goods). Each department has 4-15 classes and we used data from a total of 45 classes across all

6 departments. First we estimated seasonalities and associated errors for each class based on the

method described in section 6.1. Having estimated seasonalities, we applied Algorithms hError

and kError to reconstruct seasonalities for each class. Using these new seasonality estimates, we

predicted sales for the items in the books department. We chose the books department because
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the effects such as price, promotions and inventory were small for this department, thereby,

weekly change in sales for the books department was mainly because of seasonality. We assessed

the quality of forecast by calculating average Forecast Error, which is the ratio of total difference

between actual sale and forecast sale to total actual sale, as defined below.

Forecast Error =

∑
t |Actual Salet − Forecast Salet|∑

t Actual Salet

(29)

We compared our result against k-means and Ward’s method. We also compared our forecast

when no clustering was used, i.e., when the forecast was based on the seasonality estimate

for each class using average of weekly sales data as described in section 6.1. We found that

forecasts using hError and kError were substantially better than forecasts using k-means or

Ward’s method or forecasts without using clustering. Table 4 compares average Forecast Error

in these five situations for 17 different items in the books department.

Table 4: Average Forecast Error

Clustering Method Average Forecast Error %

hError 18.7

kError 18.3

Ward’s 23.9

k-means 24.2

No clustering 31.5

Figure 7 shows graphs comparing these forecasts for one item in the books department.

Graphs of kError and k-means are similar to that of hError and Ward’s method respectively

and therefore removed from the figure. This item was sold for a total of 33 weeks during January

through September 1997. The price for the item was constant during this period and there

was no promotion on this item, therefore we ignored all external factors and made our forecast

using only PLC and seasonality coefficients. Seasonality of the class that contains this item is

estimated using past year’s sales data of all the items in the class. The first 18 weeks of sales

data of this item is used to estimate the PLC. PLC is estimated by simple curve fitting from a
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Figure 7: Sales forecast against actual sales

——— : actual sales

—+— : forecast using hError

—o—- : forecast using Ward’s method

—4— : forecast without clustering

set of predefined PLCs. Using the seasonality estimates from past year’s data and PLC estimate

from the first 18 weeks of data, we forecast sales for the remaining 15 weeks. The graphs show

that forecast using hError is significantly better than the others.

In Figure 7, we observe that seasonality estimate without clustering failed to capture the sales

pattern. Standard clustering succeeded in making a better forecast but error-based clustering

was even better. The reason is that the books department has 5 classes. Because very few items

are used to estimate seasonality for each class, seasonality estimate for each class has large errors

and therefore the forecast based on this seasonality (without clustering) does not match actual

sales. On close inspection of the data we found that there are two groups of 3 and 2 classes

having similar seasonalities. Clustering identifies the right clusters of 3 and 2 seasonalities. The

combined seasonality of each cluster has higher accuracy because more items are used to estimate

it. Error-based clustering does better than standard clustering because it gives more weight to
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seasonality with smaller errors obtained by using larger number of items.

We restricted our forecast analysis to only a small section of books department that had very

small fluctuation in price over their selling period. This helped us eliminate effects due to price

or promotion. With the help of appropriate pricing models we could have analyzed the remaining

items as well.

7 Summary And Future Research

The traditional clustering methods are inadequate when different data points have very different

errors. In this paper we have developed a clustering method that incorporates information about

error associated with data. We developed a new objective function which is based on Gaussian

distribution of errors. The objective function provides a basis for hError and kError clustering

algorithms that are generalization of Ward’s hierarchical clustering and k-means algorithms,

respectively. Finally, we demonstrated the utility of our method in getting good estimate of

regression coefficients both on simulated data as well as on real data. We also demonstrated

its utility in obtaining good estimate of seasonality in retail merchandizing. kError is fast and

performs slightly better than hError, but hError has the advantage of automatically finding

the right number of clusters which in itself is a challenging problem. Finally, we feel that

errors contain very useful information about data and a clustering method using the information

contained in errors is an important conceptual step in the field of cluster analysis.

In our formulation we assumed that we have estimate of error matrix for each data point.

Sometimes only partial information about error matrices might be available, e.g., only the diago-

nal entries are available (as in the case of seasonality estimation). The next step in this research

would be to explore how error-based clustering performs when we have only restricted informa-

tion about error matrices. Another future research direction would be to analyze theoretically

the effect of error-based clustering on regression application. We have already developed a the-

oretical model that justifies error-based clustering of regression coefficients. We will report the

results at a later stage. We are also exploring other applications where error-based clustering

would be useful.
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