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Abstract: The last couple of decades have witnessed widespread digitization of information

and content, increasing incorporation of digital technologies into the products of diverse industries,

and often, an accompanying shift to using von-Neumann-like platform-based product architec-

tures. This phenomenon has been termed digital convergence, and has been observed in technology

industries as diverse as handheld computing, wireline and mobile telecommunications, consumer

electronics, networking equipment, residential broadband and broadcast video.

Digital convergence results in substantially more valuable and flexible products and services,

but also leads to increased substitutability between products in previously distinct markets. This

paper analyzes the economic implications of this trade-off between increasing value and increasing

substitutability. We present a new general model of imperfect competition that enables us to

capture specific economic aspects that characterize digital convergence — flexible product scope,

variability in consumer requirements, and non-exclusionary product choice. We derive four types

of equilibrium configurations — local monopoly, kinked, competitive and non-exclusive — that emerge

as outcomes of the model, and describe how each equilibrium structure characterizes a distinct stage

of digital convergence.

Our analysis establishes that as markets converge, prices rise initially even as competing prod-

ucts become less differentiated. However, when platform scope is largely dictated by exogenous

factors, prices and profits eventually fall as the stage of convergence progresses, though consumer

surplus and total surplus rise. Furthermore, while digital convergence has the expected effect

of shifting consumption patterns from multiple specialized products purchases to single general-

purpose product purchases, we describe examples of equilibria in which consumers may buy mul-

tiple general-purpose products, using each for a specialized subset of their requirements. Pricing

responses to changes in variable costs and consumer functionality needs are also discussed. When

firms can strategically choose platform scope, we show that in any subgame perfect equilibrium,

duopoly prices are always higher than monopoly prices, and industries may sustain high levels of

profitability even when their boundaries blur.

1We thank Nicholas Economides, Roy Radner, participants at the 14th Workshop on Information Sys-
tems and Economics, and seminar participants at New York University, the University of Florida and the
University of Rochester for comments and feedback on earlier versions of this work. The usual disclaimers
apply.



We also find that the market generally does not provide the socially efficient level of scope.

What is surprising is the direction in which the market errs. When the market is fully covered,

firms provide a level of scope which is socially excessive. Correspondingly, when only a subset of the

consumers in the market purchase the product, the firms underprovides scope. This result persists

under both monopoly and duopoly market structures.

It is likely that universal access will become a social priority for mobile telephony and Internet

access, as the use of these services supersede wireline telephony as the primary mode of access

to emergency police or medical services, or simply if public policy dictates equitable access to

electronic forms of commerce and work. Our results establish that with continued progress in the

digital technologies underlying computing and telecommunication, these social objectives may often

be achieved without resorting to regulatory intervention
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1. Overview and motivation

Over the last few years, there has been a widespread incorporation of digital technologies into

the products of a number of diverse industries, a phenomenon that has been referred to as digital

convergence (Yoffie 1997). As product technologies in these industries become increasingly digital,

there is typically an accompanying shift towards von-Neumann-like architectures, characterized by

the use of powerful general-purpose hardware, and the reliance on a software platform to implement

the actual functionality. This often leads to more valuable and flexible products, each offering a

broader range of features. However, this use of common underlying digital technology can also result

in overlapping sets of functionalities being provided by products in previously distinct industries.

As a result, consumers begin to view products across these industries as substitutes (Greenstein

and Khanna 1997), which causes boundaries between these industries to blur (Yoffie 1997). The

primary objective of our paper is to analyze the economic implications of this trade-off — between

increased value and increased substitutability — in markets subject to digital convergence.

As an illustration, consider the evolution of the mobile telephone and handheld computing

industries. Cellular handsets used to be designed around fairly rigid and highly optimized prod-

uct architectures that were capable of little more than wireless voice communication. Recently,

the Symbian-OS platform has emerged as the cornerstone of an ‘application software—operating

system—hardware’ architecture for mobile telephony, and in parallel, Microsoft has developed the

competing Smartphone platform. The primary objective of these platforms is to establish an op-

erating system designed specifically for mobile telephony, enabling powerful and flexible IP-based

communications applications which are implemented using general-purpose digital hardware. How-

ever, the architecture shift also makes it feasible to easily add other applications suitable for mobile

device users. For instance, Nokia’s Series 60 software platform facilitates the seamless develop-

ment and deployment of Symbian-OS based applications for personal information management,

multimedia, and content browsing.

Correspondingly, in the handheld computing industry, hard-wired devices such as the Sharp

Wizard have evolved into more sophisticated PalmOS andMicrosoft PocketPC-based von-Neumann-

like architectures. These systems are designed primarily for personal information management tasks

— maintaining schedules, creating address and contact lists, and recording memos — and provide

some support for PC-based applications as well. However, the shift to a platform-based architec-

ture enables new mobile communications functionality in handheld computers, often implemented

through application software. Converged devices based on these platforms, such as Handspring’s

Treo, Samsung’s Nexio, and Danger Research’s Sidekick have recently been launched.

At their core, the former set of devices are mobile telephones and the latter are handheld

computers. However, the bilateral shift to a platform architecture has expanded the breadth of

functionality each set of devices provides. As a consequence, they become more valuable, but

simultaneously, consumers start viewing cell-phone and PDA products as gross substitutes, which

affects pricing and profitability across both industries.
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Another recent example of the expansion of the scope of a familiar von-Neumann architecture

based system is the Media Center PC from Hewlett-Packard, based on the Media Center edition of

Windows XP, which aims to integrate a competitive level of home-theater functionality (including

television viewing, a DVD player, and sophisticated digital audio) into a high-end PC. This product

is a recent addition to a growing set of first-generation converged home entertainment platforms,

such as the Moxi Media Center from Digeo, and Microsoft’s X-Box, that are blurring the boundaries

between the home computing and consumer electronics industries. Similar convergence trends

are prevalent in the cable television, residential Internet access and wireline telephony industries.

In each of these cases, technological convergence (the shift to digital technology and a platform

architecture) results in product convergence (an overlap in the functionality of products and services

provided by distinct industries), which may eventually lead to industry convergence.

While each of these examples illustrates convergence driven by digital technologies, the phe-

nomenon itself is not unique to the information age. Ames and Rosenberg (1977) document a

similar transformation in manufacturing processes across a wide range of industries at the turn of

the twentieth century. Convergence in that case was at the production-process level, wherein similar

production technologies such as machine tools were being employed across several industries. A

sizeable literature discusses the effect of the new generation of such general purpose production

technologies, now termed flexible manufacturing systems, on technology adoption patterns, and on

firms’ product and manufacturing strategies (Roller and Tombak 1990, Eaton and Schmitt 1994,

Johansen et. al. 1995, among others).

In contrast, the kind of convergence we model is at the product level, wherein products in distinct

industries are increasingly designed around a common set of general purpose digital technologies —

microprocessors, memory chips, hard drives, networking chipsets and operating systems. Bresnahan

and Trajtenberg (1995) point out a number of important economic and structural features of

industries affected by these kinds of general purpose technologies. Consistent with their theory, we

treat the underlying digital technologies as being supplied by an exogenous upstream technology

sector, and focus on competition between firms in the downstream converging product markets.

Thus far, research in IT and industrial organization economics that studies competition between

firms in converging industries is fairly limited. The collection of essays in Yoffie (1997) provide some

insight into the effect of product convergence on competitive strategy and industry structure — in

particular, Greenstein and Khanna (1997) predict that convergence at the product level will lead to

a higher intensity of competition. Katz and Woroch (1997), who focus on the telephone and cable

markets, observe that convergence can be a source of increased competition if it creates new entry

incentives and opportunities in each others’ markets, and that reduced concentration may result if

there are significant economies of scale or scope from entering multiple markets.

However, there have been no substantive models that capture the effects unique to digital

convergence, or that investigate how this phenomenon affects competition across industries. There

are no clear theory-based strategic guidelines for firms in these industries, or prescriptions for what

their optimal choices of platform scope should be. It is not clear how digital convergence affects
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pricing, demand, profitability or welfare. These are the questions that our paper addresses, in the

sections that follow.

In Section 2, we provide an overview of our model, first explaining why digital convergence

and varying platform scope necessitates a new representation of imperfect competition, and then

outlining the basic building blocks of the model. Section 3 analyzes the case of a single-product

monopoly, deriving the optimal pricing, production levels and investments in platform scope. The

value functions and monopoly demand structure derived in this section form the basis for the models

of duopoly studied in the subsequent sections. In Section 4, we characterize the nature of price

equilibria in a converging duopoly model, describe the four kinds of equilibrium configurations, and

establish the conditions under which each is feasible. Section 5 analyzes duopoly with exogenously-

specified platform scope, examines how the nature of competition, prices, profits and surplus vary

as platform scope changes, and studies their sensitivity to other exogenous model parameters at

each feasible level of platform scope. In section 6, we analyze duopoly with endogenous platform

scope in a two stage-game, and characterize the subgame perfect Nash equilibrium outcomes when

firms make costly technology investments in scope. Section 7 examines how the model’s outcomes

are affected when consumers’ breadth of functionality requirements is high, and discusses some

unique outcomes that arise in this case. Section 8 concludes and outlines current research.

2. Model

2.1. Overview and general framework

Traditional economic models of imperfect competition (Dixit and Stiglitz 1976, Salop 1979, Shaked

and Sutton 1983, Economides 1984) were developed to analyze strategic interaction among func-

tionally similar products in relatively static environments. In the standard models, products are

differentiated ‘spatially’/horizontally with respect to abstract attributes (Salop 1979), or vertically

with respect to quality (Shaked and Sutton 1983). A primary drawback of applying these models

to converging technology markets is that they are based on the assumption that all products are

similar in terms of the functionality or set of functionalities they provide to consumers.

Some extensions of these basic models have been developed to study technology markets. von

Ungern-Sternberg (1988) allows firms to choose the level of transportation costs in a Salop-type

model of monopolistic competition. Low levels of transportation costs in this model are synonymous

with a higher degree of scope. Banker et al. (1998) take a different and interesting approach —

instead of an explicit specification of consumers’ product preferences, they extend Dixit (1979)

by incorporating product quality into the aggregate demand function, which simplifies the model

considerably and lends itself to an elegant analysis.

However, when applied to converging markets, these extensions have the same drawbacks as

their underlying basic models — they restrict products to providing a similar set of functionalities,

and there is typically an assumption of exclusionary choice. To get around these problems, and to
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capture the salient characteristics of digital convergence most effectively, we develop a new model of

product differentiation, which generalizes standard approaches to modeling imperfect competition

in a number of important ways.

First, the standard approach of defining products as points in a product space is inadequate

when applied to converging platforms of varying scope and effectiveness — it is more natural to think

about a functionality space rather than a product space. This is because as device hardware becomes

more powerful, and operating systems more sophisticated, the scope and flexibility of platforms

increases, and a single product provides consumers with an increasing range of functionality. In

evaluating these increasingly general-purpose products, each consumer ascertains how effectively

a product satisfies the set of functionalities they require. These sets themselves may not change

— they are merely fulfilled in a different way, possibly using fewer products. To capture this new

aspect of converging technology products, we model the space of desired functionalities directly,

with consumers requiring different sets of functionalities, and with different products satisfying

different sets of functionalities with varying effectiveness. Our approach bears some resemblance

to the product characteristics approach pioneered by Lancaster2 (1966, 1975), though we take care

to ensure that our model is robust to some standard criticism levied against this approach.

Second, translated into our context, the single exogenous parameter of misfit or transportation

cost in a standard spatial model may represent both the breadth/variety of customer functionality

requirements, as well as the implied level of scope. In other words, a change in transportation

cost could represent a change in how effectively a product fulfils a range of customer requirements,

or a change in the range of requirements themselves. The former is a product characteristic,

often influenced by the state of technological progress, and sometimes explicitly chosen by a firm.

The latter is typically an exogenous characteristic of customers in the market. To separate the

two effects, we need two variables — an exogenous parameter representing breadth of customer

requirements, and a possibly endogenous variable representing platform scope — both of which

directly influence the extent of product differentiation.

Third, we depart from the traditional assumption of exclusionary choice. As observed earlier,

digital convergence results in customers evaluating a single product with higher scope in lieu of mul-

tiple products with more focused functionality. Consequently, a robust model needs to admit both

possibilities. We assume that a consumer who owns multiple products fulfils a specific requirement

by using only the most effective product that she owns, rather than by combining the capabilities

of all relevant products. This approach is consistent with a ‘quality’ or effectiveness interpretation

of the value derived from functionality (rather than an additive ‘quantity of functionality’ interpre-

tation), and insulates one from the standard criticism levied against the Lancaster-type ‘products

as a bundle of attributes’ models3.

2In Lancaster’s models, consumption is represented by a process in which products are inputs, characteristics
are outputs, and the preferences of consumers are specified over these characteristics. Preferences over products
are derived from these preferences over characteristics, depending on the specific characteristics provided by each
product.

3However, this precludes value from a lower-quality ‘backup product’, or from combining the capabilities of multiple

4



Beyond this, our model preserves other standard aspects of models of horizontal differentia-

tion. Products are symmetrically located, ‘distance’ between a product’s core functionality and a

consumer’s set of requirements affects product effectiveness and value, and distance between prod-

ucts continues to contribute to the level of product differentiation, thus enabling one to separate

decisions about platform scope and product similarity4.

2.2. Basic model

The basic model is described in four parts: the functionality space, the nature of the product, the

distribution and value functions of consumers, and the production technology available to firms.

Functionality space: The basis for products and customer preferences is a set of function-

alities, which are distributed around the circumference of a unit circle. Every point on the circle

represents a specific functionality. Two functionalities which are closer to each other on the circle

are more similar in terms of the technology needed to realize them, as compared to two functional-

ities that are further apart. The functionality space is exogenous, and is not altered by the choices

of the firms or consumers.

Products: Each product has a core functionality, which is the functionality it provides most ef-

fectively. In addition, each product has a level of platform scope (1/t), which may be endogenously

chosen, and which in conjunction with a market-specific exogenous loss function g(.), determine

the effectiveness of a product in providing each non-core functionality. Specifically, the effective-

ness with which a product provides a functionality located at a distance x ∈ [0, 12 ] from its core

functionality is given by u(x) = max{1− tg(x), 0}. Consequently, an increase in a product’s scope
(a decrease in t) increases the product’s effectiveness at providing functionalities away from its core

functionality5. This is illustrated in Figure 2.1.

The loss function g(.) is assumed to be non-negative and strictly increasing. Furthermore, we

assume that 1 − tg(12) ≥ 0. This ensures that every product has non-negative effectiveness on

every functionality, and imposes a lower bound on scope. We discuss an example that relaxes this

assumption — that is, the case of very low scope — in section 7.

Consumers: Each consumer is characterized by an arc on the unit circle. This arc represents

the set of functionalities that the customer requires. Different customers may require different sets of

functionalities, and consequently, the arcs of functionality requirements of these different customers

are located on different segments of the unit circle. We assume that these requirements arcs are

products for a specific functionality requirement. It also does not capture possible technological complementarities
from co-location of functionality within a device, or performance degradation from having multiple tasks competing
for the same device resources. We analyze some of these issues explicitly elsewhere (Mantena and Sundararajan,
2002).

4For a fixed set of customer needs, a product may be more differentiated from its competitors due to the fact that
its scope (and that of its competitors) is lower, or because its core functionality is more distinct (further away) from
that of its competitors.

5To simplify exposition, we sometimes use the phrase ‘a product located at z’ rather than the more cumbersome
‘a product whose core functionality is located at z’.
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Figure 2.1: Depicts a product, its core functionalities, and the effectiveness of the product across
its functionalities. The circle is ‘unfurled’, illustrating how product effectiveness degrades as one
moves from the core functionality at to the opposite functionality at 1 (or 0). The value of the
cumulative loss function G(y) is also illustrated. For mathematical convenience, the functionality
space in [0, 12 ] is replicated in [1,

3
2 ].

uniformly distributed around the functionality space, and are all of constant length r ∈ (0, 1] .The
consumer whose arc of functionality requirements is centered at y ∈ [0, 1] on the unit circle is
referred to as ‘the consumer located at y’. The density of consumers6 on the unit circle is n2 .

The value obtained by a consumer from a product is computed by summing the effectiveness

of the product over the set of functionalities that the consumer requires. The gross value that can

be obtained by a consumer located at y from a product located at z is therefore:

y+ r
2Z

y−r
2

u(|x− z|)dx, (2.1)

measured in monetary units. This value function is illustrated graphically in Figure 2.2(a), for two

6Assuming a density of n
2
and not n leads to simpler algebraic expressions.
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(a) Total value obtained by two candidate consumers, for r < 0.5 (b) Total value obtained by a candidate consumer, for r > 0.5
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Figure 2.2: Depicts the value obtained by consumers located at different points in the market,
for different values of r. A consumer is identified by the midpoint of their interval of desired
functionalities, which then span r

2 on either side of this midpoint. The total value therefore depends
on the location of this midpoint, relative to that of the product’s core functionality, and is equal
to the shaded area under the g(y) curves.

different arcs of functionality requirements, and for a larger range of requirements in Figure 2.2(b).

Consumers can buy none, one or multiple products. If a customer buys no products, they obtain

a reservation value of zero. If a consumer buys just one product, then they obtain a gross value as

specified by equation (2.1). If a consumer buys two or more products, each functionality that the

customer requires is fulfilled by the product that provides that functionality most effectively. In

all cases, consumers choose the product(s) that maximize their surplus — the total value from the

products, minus the total price paid.

Technology: All firms have the same cost of production C(q, t) = cq+F (t), where q is quantity

produced, and t is the inverse of platform scope. Recall that an increase in t represents a decrease

in scope. This separable form implies the following assumptions about C(q, t).

1. Marginal cost of production is non-negative and constant: C1(q, t) > 0, C11(q, t) = 0.

2. Variable cost is independent of scope C12(q, t) = 0.

Numbered subscripts to functions represent partial derivatives with respect to the corresponding

argument. For instance C1(q, t) is the partial of C with respect to its first argument, and C12(q, t)

is the cross partial of C with respect to its first and second arguments. This notation will be

preserved throughout the paper.

In addition, the cost function is assumed to have the following properties:

3. Fixed cost is non-decreasing and convex in scope: F1(t) ≤ 0, F11(t) > 0.
4. Marginal cost is not too high: for all t ≤ 1

g(0.5) , c < 2
R 1
2
1
2
− r
2

u(x)dx.
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The fact that marginal cost is constant is a recognition of the fact that in typical electronics and

computer devices, the production of the hardware component is a commodity that is outsourced

to a specialist contractor like Solectron or Flextronics. We sometimes consider the case of zero

marginal cost as a specific example. An increase in platform scope or flexibility is typically achieved

by a superior product design, an increase in the functionality of the software component, or a

combination of the two. Both of these may result in increased fixed costs, and do not affect

variable production cost substantially, as captured in Properties 2 and 3. In section 6.2, we

consider the case of F1(t) = 0, or when the choice of scope is a costless strategic variable. Property

4 simply states that in the feasible range of scope, marginal cost c is lower than the total value

a consumer located diametrically opposite a product derives from it. This makes it possible for

firms to profitably sell their product to all consumers in the market.

3. Monopoly

In this section, we model a monopolist producing a single product. The monopolist chooses

platform scope by choosing t, and then sets the profit-maximizing monopoly price for the chosen

level of t. We provide a general characterization of the demand function, and then solve the

monopolist’s problem with a linear loss function. In this section, as in sections 4 through 6, we

address the case of r ≤ 1
2 in detail. The analysis for r >

1
2 , while similar, has some unique aspects

which we explore further in Section 7.

Without loss of generality, fix the location of the core functionality of the product at 12 . This

divides the consumers into two identical and symmetric halves [0, 12 ] and [
1
2 , 1]. At any price, the

demand from each segment will be identical. We focus our analysis on consumers in one of these

segments [12 , 1]. To facilitate simpler analysis, we ‘unfurl’ the unit circle, and replicate the interval

[0, 12 ] as [1,
3
2 ], as illustrated in Figure 2.1.

Given this depiction, the value obtained by a consumer located at y ∈ [12 , 1] (that is, a consumer
whose arc of functionality requirements is centered at y) is given by:

U(y, t) =

y+ r
2Z

y− r
2

(1− tĝ(x))dx, (3.1)

where

ĝ(x) =

g(12 − x) for 0 ≤ x ≤ 1
2 ;

g(x− 1
2) for 12 ≤ x ≤ 1;

g(32 − x) for 1 ≤ x ≤ 3
2 .

(3.2)

Refer to Figure 2.2 for an intuitive understanding of the function ĝ(.).
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3.1. Consumer value functions

Based on (3.1) and (3.2), the value function U(y, t) in the interval y ∈ [12 , 1] has a different functional
form in each of three successive ranges of y, which is:

U(y, t) =

r − t £G(1+r2 − y) +G(y − 1−r
2 )
¤

for 12 ≤ y ≤ 1+r
2 ;

r − t £G(y − 1−r
2 )−G(y − 1+r

2 )
¤

for r2 ≤ y ≤ 2−r
2 , and

r − t £2G(12)−G(y − 1+r
2 )−G(1− (y − 1−r

2 ))
¤

for 2−r2 ≤ y ≤ 1,
(3.3)

where G(x) =
R
g(x)dx is defined as the cumulative loss function. Refer to Figure 3.1 for a

graphical sketch of the integrals, as well as the integral expressions based on (3.1).

The following lemma describes some properties of U(y, t):

Lemma 1. For all y ∈ [12 , 1], t ∈ [0, 1
g(0.5) ]

(a) U(y, t) is continuous and decreasing in both y and t

(b) U1(y, t) is continuous and is piece-wise differentiable in both y and t.

(c) U11(y, t) ≤ 0 for 1
2 ≤ y ≤ r

2 , U11(y, t) ≥ 0 for 1−r
2 ≤ y ≤ 1, and sign[U11(y, t)] =

−sign[g11(x)] for r2 ≤ y ≤ 1−r
2 .

(d) U2(y, t) is continuous and decreasing in y.

All proofs are provided in Appendix A. Part (a) of the lemma establishes that for a general

loss function g(.), consumers located closer to the product derive more value from it and that an

increase in scope increases value for all consumers. Parts (b) and (c) establish some properties

about the continuity and curvature of the value function. The final part of the lemma indicates

that the marginal benefit from an increase in scope is more for consumers located farther away from

the product. Stated differently, the marginal consumer (that is, the one who gets least value from

the product) benefits more than any of the inframarginal consumers (the ones who get higher value

from the product) when scope is increased. This is an important property of the value function for

our subsequent analysis.

3.2. Demand and optimal prices

The properties derived in Lemma 1 become more significant when one recognizes that the value

function is identical to a rescaled inverse demand function faced by the monopolist. The reasoning

is as follows — if the monopolist were to set price p = U(y, t), where y ∈ [12 , 1], all consumers located
between 1

2 and y would purchase, resulting in a demand of (y − 1
2)
n
2 from consumers located in

[12 , 1], and an identical demand of (y − 1
2)
n
2 from consumers located in segment [0, 12 ], for a total

demand of n(y − 1
2).

Define P (q, t) = U(q + 1
2 , t) as the rescaled inverse demand function — the argument q is the
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Figure 3.1: Illustrates the derivation of the consumer value function U(y, t). In the three successive
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(a) Inverse demand curve for r<0.5 (b) Inverse demand curve for r>0.5 

(d) Gross profit function under full-market coverage (c) Gross profit function under partial-market coverage 
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Figure 3.2: Inverse demand and revenue functions for a single-product monopolist. The structure
of the demand curve is largely independent of the shape of g(.) — it starts out convex and ends up
concave. This results in two candidate maxima for the revenue function, as depicted in (c) and (d).
Again, independent of g(.), the revenue function has, at most, one interior local maximum.

mass of customers in [12 , 1] who purchase the product
7, and the gross profit function π(q, t) =

nq(P (q, t)− c) as the corresponding total profits before accounting for the fixed costs of platform
scope. Also define the net profit function Π(t) as the fixed cost of scope subtracted from the optimal

gross profits at scope level t:

Π(t) = π(q∗(t), t)− F (t), (3.4)

where8 q∗(t) ∈ argmax
q

π(q, t). For a linear loss function g(x) = x, using (3.3), the gross profit

7Therefore, the realized demand corresponding to an inverse demand of P (q, t) is nq — which is why we define
it as the ‘rescaled’ inverse demand function, and is also why we choose n

2
rather than n as the market size. For

expositional simplicity, we subsequently drop ‘rescaled’, and refer to P (q, t) as simply the inverse demand function.
8P (q, t) is the actual price charged by the firm, and the monopolist chooses price, not quantity. However,

maximizing profits by choosing q ∈ [0, 1
2
] is mathematically identical to maximizing profits by choosing a price

that results in demand nq ∈ [0, n2 ], based on the bijection defined by P (q, t); the former approach is adopted for
mathematical convenience.
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function reduces to:

π(q, t) =

nq(r − c)− ntq(q2 + r2

4 ) for 0 ≤ q ≤ r
2 ;

nq(r − c)− ntrq2 for r2 ≤ q ≤ 1−r
2 ;

nq(r − c)− ntq(q(1− q)− (1−r)2
4 ) for 1−r2 ≤ q ≤ 1

2 .

(3.5)

Figures 3.2(c) and 3.2(d) depict the typical shape of π(q, t). Finally, define the gross surplus under

monopoly as sM (q, t) = n
qR
0

(P (x, t)− c)dx. This is the total of firm profits and consumer surplus

(that is, the total surplus) before accounting for the fixed cost of scope.

The following properties are useful in establishing the profit-maximizing choices of q:

Lemma 2. (a) For a linear loss function g(x) = x, π(q, t) is strictly concave in q for 0 ≤ q ≤ 1−r
2 ,

and therefore has no more than one interior maximum in this interval.

(b) In the interval 1−r2 ≤ q ≤ 1
2 , π(q, t) is always maximized at one of its two end-points. That

is, either π(1−r2 , t) ≥ π(q, t) for all q ∈ [1−r2 , 12 ], or π(12 , t) ≥ π(q, t) for all q ∈ [1−r2 , 12 ].

Based on Lemma 2, for a fixed level of t, we can characterize the optimal choice of price and

profits, and the resulting optimal demand:

Proposition 1. For a linear loss function g(x) = x:

(a) If 2 ≥ t ≥ (r−c)
r2
, then q∗(t) =

q
4(r−c)−r2t

12t , P (q∗(t), t) =
³
2r+c
3 − r2t

6

´
and π(q∗(t), t) =

n
6

q
(4(r−c)−r2t)3

12t .

(b) If (r−c)
r2
≥ t ≥ 2(r−c)

r(2−√2r) , then q
∗(t) = r−c

2rt , P (q
∗(t), t) = r+c

2 and π(q∗(t), t) = n(r−c)2
4rt , and

(c) If 2(r−c)
r(2−√2r) ≥ t ≥ 0, then q∗(t) =

1
2 , P (q

∗(t), t) =
³
r − tr(2−r)

4

´
, and π(q∗(t), t) = n

³
r−c
2 − tr(2−r)

8

´
A number of results are established in Proposition 1. Firstly, as the scope of the product

(1/t) increases, the quantity supplied by the monopolist increases steadily upto a threshold value

t̂ = 2(r−c)
r(2−√2r) , at which point it increases discontinuously to

n
2 , and all consumers buy the product.

It remains at this level for further increases in scope. On the other hand, the corresponding optimal

price rises steadily in scope upto a threshold value of t, then remains constant at a value of r+c2
until the point t̂ = 2(r−c)

r(2−√2r) . At this point, it is profit-maximizing for the monopolist to drop

the price to the point where all consumers buy the product. A further increase in scope does not

change demand, but results in a steady increase in price. The variation of price and quantity as

scope varies are depicted in Figures 3.3(a) and 3.3(b), and the corresponding levels of profit and

total surplus at the monopolist’s profit maximizing choice q∗(t) are depicted in Figures 3.3(c) and
3.3(d).
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Figure 3.3: Depicts the monopoly outcomes as a function of scope 1t . Demand and prices increases
steadily up to a threshold, at which point the monopolist finds it optimal to lower prices sub-
stantially and sell to all consumers in the market. While profits and total surplus also increase
monotonically, consumer surplus (the difference between total surplus and profits in (d)) increases
up to the threshold value of scope, and then after a substantial jump, falls rapidly.

3.3. Profitability and welfare analysis

Figure 3.3(c) depicts that the level of gross profits increases continuously with scope, and the rate

of increase in profits with scope jumps substantially when q∗(t) transitions to 1
2 . Correspondingly,

total surplus increases monotonically upto t̂, at which point it increases discontinuously (since the

entire set of consumers now consume the product), and then continues to increase, albeit at a slower

rate than profits, as scope increases.

Consumer surplus, which is the difference between total surplus sM(q∗(t), t) and gross profits
π(q∗(t), t), increases monotonically with scope upto the threshold t̂, and is maximum immediately

after q∗(t) changes discontinuously to 1
2 . It subsequently decreases rapidly as platform scope in-

creases. This pattern is both intuitive and consistent with previous research. As platform scope

increases, this makes consumers more homogeneous with respect to the value they place on the

product. This facilitates higher surplus extraction by the monopolist — in fact, at t = 0, the mo-
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nopolist’s profits are equal to the entire total surplus, since the product provides identical value

to all consumers. This is similar to results derived in the limit for the monopoly bundling of in-

formation goods (Bakos and Brynjolfsson 1999), and also complements other results from Nalebuff

(1999). Analogous reasoning leads one to expect consumer surplus to decrease as the breadth of

functionality requirements r increases, and this is in fact the case.

The preceding analysis is with respect to an exogenously specified level of platform scope.

Alternately, if scope is endogenous, the monopolist will choose t to maximize the function Π(t) as

defined in (3.4). Correspondingly, a social planner who chooses the socially efficient level of scope,

but lets the market set prices, would choose t∗ = argmax
t

¡
sM(q∗(t), t)− F (t)¢.

Define t∗p as the optimal level of t chosen by the monopolist when q∗(t) < 1
2 (that is, under

partial market coverage) and t∗f as the level of scope chosen by the monopolist when q
∗(t) = 1

2

(under full market coverage). The following proposition benchmarks monopoly choices with the

social optimum.

Proposition 2. For a linear loss function g(x) = x, t∗p > t∗ and t∗f < t∗. That is, under partial
market coverage, the monopolist under-invests in platform scope, and under full market coverage,

the monopolist over-invests in platform scope as compared to the socially optimal level.

The results of Proposition 2 are illustrated in Figure 3.4. Recall that a lower value of t corre-

sponds to a higher value of scope. When maximizing net profits Π(t), the monopolist equates the

marginal increase in gross profits π2(q∗(t), t) to the marginal increase in fixed cost of scope F1(t).
Correspondingly, the socially optimal level of scope is where the marginal increase in gross total

surplus sM(q∗(t), t) equals the marginal increase in fixed cost of scope F1(t).

The welfare analysis above is based on prices being chosen by the monopolist after a social

planner mandates t∗. However, even if we consider the first best solution, in which the social
planner always mandates full market coverage at the socially-optimal level of platform scope, the

results of Proposition 2 still hold. The full-market coverage result is intuitive when one recognizes

that when one increases scope, Lemma 1(d) ensures that the value of the product to the marginal

consumer (which determines price) increases faster than the value to the average consumer (which

determines marginal total surplus). The monopolist therefore over-invests in scope.

There has been a substantial amount of regulatory activity in technology industries subject to

convergence, such as the telecommunications, cable television and software industries. The results

of Proposition 2 may be useful in determining the effectiveness of policies (like mandating universal

coverage) prescribed to a regulated monopolist. This issue is discussed further in Section 8.
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Figure 3.4: Depicts the relative values of the monopolist’s optimal choice of t and the socially
optimal choice of t for two different convex fixed cost functions. When F (t) is strictly convex,
the F1(t) curves slope upwards. Therefore, when the marginal cost of scope is relatively low, the
monopolist’s optimal choice of scope occurs in the full-market coverage region, where the marginal
gross profit curve π2(q

∗(t), t) is below the marginal gross total surplus curve sM2 (q∗(t), t), and leads
to over-investment in scope (t∗f < t

∗). On the other hand, in the partial-market coverage region,
the marginal gross profit curve lies above the marginal total surplus curve. If the marginal cost of
scope is high, the monopolist’s choice occurs in this region, and consequently, t∗p > t∗.

4. Duopoly: equilibrium structure

We next consider two firms A and B, whose products’ core functionalities are located diametrically

opposite each other9, at 12 and 1 respectively. In this section, we characterize demand and payoffs,

describe the different kinds of feasible price equilibria, and show when each kind is feasible. In

Sections 5 and 6, we determine and analyze these equilibria when scope is exogenously specified,

and when it is endogenously chosen. Consistent with our monopoly analysis, we consider the case

of r ≤ 1
2 in detail, and discuss some unique and interesting aspects of the case of r >

1
2 in Section

7.

9Since we focus on the effect of product scope, the products’ locations are fixed by assumption. The diametrically
opposite location (or equivalently maximal differentiation) assumed here is standard in spatial models (Salop, 1979,
Grossman and Shapiro, 1984).
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(a) Inverse demand function with higher prices (b) Inverse demand function with very low prices 
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Figure 4.1: Inverse demand functions under duopoly. The kinks in the inverse demand curves reflect
first the influence of a competing product with non-zero surplus, and then a competing product
such that the seller’s product has non-zero incremental surplus.

4.1. Demand and profit functions

We refer to a firm’s own choices with subscript i and those of its opponent with subscript j. Given

an opponent price pj , the inverse demand of duopolist i, denoted Pi(qi, ti, tj , pj), generally takes

one of two functional forms. The first form is the monopoly inverse demand function PM(q, t) =

U(q + 1
2 , t), which is simply the inverse demand function of the monopolist The second is the

competitive inverse demand function, which has the following form, and will be explained shortly:

PC(q, ti, tj, pj) = U(q +
1

2
, ti)− U(1− q, tj) + pj. (4.1)

When firm j prices its product higher than the reservation value of the customer who values

it most, the inverse demand function of firm i, at a competitor price pj , is simply the monopoly

inverse demand function. That is, if pj ≥ U(12 , tj):

Pi(qi, ti, tj , pj) = P
M(qi, ti) for 0 ≤ qi ≤ 1

2
. (4.2)

Next, if U(12 , tj) ≥ pj ≥ U(1, tj):

Pi(qi, ti, tj , pj) = PM(qi, ti) for 0 ≤ qi ≤ 1−U−1(pj, tj); (4.3)

= PC(qi, ti, tj, pj) for 1− U−1(pj , tj) ≤ qi ≤ 1
2
,

where the inverse of U is with respect to its first argument (that is, U(U−1(u, t), t) = u).

This is illustrated in Figure 4.1(a). For values of qi ≤ 1−U−1(pj , tj), Pi(qi, ti, tj, pj) is identical
to the monopoly demand function, since these consumers get no surplus from the purchase of

product j. We call this the ‘monopoly region’. For values of qi > 1 − U−1(pj , tj), which we
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term the ‘competitive region’, the demand function becomes less elastic than the corresponding

monopoly demand function. This is because in order to sell to each new customer, the duopolist

must compensate not only for the reduction in value due to increased distance from her own

product’s core functionality, but also for an increase in value from the competing product, which

is now positive and increasing in qi. Accounting for this effect yields inverse demand of the form

(4.1).

The demand function therefore has a kink at the point qi = 1−U−1(pj , tj). As the competitor
lowers price pj, the monopoly region of Pi(qi, ti, tj, pj) shrinks. Finally, when all customers have

positive value for firm j’s product, the monopoly region completely disappears: If pj ≤ U(1, tj):

Pi(qi, ti, tj , pj) = P
C(qi, ti, tj, pj) for 0 ≤ qi ≤ 1

2
. (4.4)

There is also a third kind of region on the duopolist’s inverse demand function (the non-exclusive

region), which occurs only if r > 1
2 , is illustrated in Figure 4.1(b), and is elaborated on in Section

7.

Let πi(qi, ti, tj , pj) represent the gross profit function of the duopolist:

πi(qi, ti, tj , pj) = nqi(Pi(qi, ti, tj, pj)− c), i = A,B, (4.5)

which has the following useful property:

Lemma 3. The function πi(qi, ti, tj , pj) has either no interior maximum, or a unique interior max-

imum in qi.

We subsequently refer to the portion of the gross profit function which corresponds to the

monopoly region of Pi(qi, ti, tj , pj) as the monopoly portion of the duopolist’s gross profit func-

tion, and the portion of the gross profit function which corresponds to the competitive region of

Pi(qi, ti, tj , pj) as the competitive portion of the duopolist’s gross profit function

4.2. Equilibrium configurations

Depending on the position of each duopolist’s equilibrium choice of q on their inverse demand

function, four different equilibrium configurations are possible for the second-stage pricing game:

1. Local monopoly equilibrium: At this equilibrium, each firm behaves like a local monop-

olist and prices in the monopoly region of their demand curves. Some customers do not

purchase either product, and the sum of the equilibrium demand of both firms is less than n
2

(that is, at equilibrium, qA + qB <
1
2). This is illustrated in Figure 4.2(a). The prices and

firm profits are generally identical to those in the single product monopoly case, but in some

instances, one of the prices may be higher.
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(a) Local monopoly equilibrium configuration (b) Kinked equilibrium configuration 

(c) Competitive equilibrium configuration (d) Non-exclusive equilibrium configuration 
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Figure 4.2: Equilibrium configurations under duopoly. There are four equilibrium configurations
feasible under these demand curves. In the local monopoly equilibrium, a positive fraction of
customers does not purchase. The market is split evenly in the kinked and competitive equilibria,
and in the non-exclusive equilibrium, which occurs only for r > 1

2 , a fraction of customers buy both
products.

2. Kinked equilibrium: At the kinked equilibrium, both firms price at the kink between the

monopoly and competitive regions of their respective demand curves, and total equilibrium

demand is n
2 . This is illustrated in Figure 4.2(b). At first glance it might seem as if this

equilibrium configuration is a knife’s-edge case, but it is feasible across a whole range of scope

and demand parameters.

3. Competitive equilibrium: This equilibrium configuration is analogous to the ‘standard’

equilibrium that one comes across in Salop-like models of imperfect competition. The firms

price in the competitive region of their demand curves, wherein the firms compete for each

others’ marginal consumer. In equilibrium, customers still purchase only a single product,

and the total equilibrium demand is still n2 . This is illustrated in Figure 4.2(c)

4. Non-exclusive equilibrium: In this equilibrium, a subset of customers purchase both
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products, and the total equilibrium demand is greater than n
2 . This is illustrated in Figure

4.2(d) — since this kind of equilibrium occurs only if r > 1
2 , we discuss it further in Section 7.

4.3. Feasible pure-strategy price equilibria

Given the values of scope ( 1ti ,
1
tj
) and its opponent’s price pj, firm i chooses a price pi that maximizes

its payoff. As in section 3, since choosing qi is mathematically identical to choosing pi, and is

analytically more convenient, we use qi as the optimization variable. This implies that given

pj, ti, and tj, firm i chooses qi to maximize πi(qi, ti, tj, pj). We establish necessary and sufficient

conditions for the existence of the different equilibrium configurations and then proceed to compute

them10.

The regions of the parameter space (tA, tB) in which each equilibrium configuration is feasible

are mapped out by identifying where pairs of actions (i.e., choices of qi) are locally optimal, a

necessary condition for a candidate action pair to be feasible as an equilibrium. Given ti, we define

QM(ti) as the interior local maximum, if it exists, on the monopoly profit function of firm i, for

each i = A,B. Lemma 2 ensures that there is at most one interior local maximum. Where an

interior local maximum does not exist, we set QM(ti) =
1
2 . Consequently:

QM(ti) = x :
U(x+ 1

2 , ti)− c
−U1(x+ 1

2 , ti)
= x, if such an x exists in [0,

1

2
] (4.6)

=
1

2
otherwise.

Analogously, given ti and tj , we define Q
C(ti, tj) as the interior local maximum of the duopoly profit

function (which, from Lemma 3, is unique if it exists), in the competitive region of the demand

function, for a value of pj = U(1−QC(ti, tj), tj):

QC(ti, tj) = x :
U(x+ 1

2 , ti)− c
−[U1(x+ 1

2 , ti) + U1(1− x, tj)]
= x, if such an x exists in [0,

1

2
] (4.7)

=
1

2
otherwise.

QC(ti, tj) is the interior local maximum of the competitive profit function qi(P
C(qi, ti, tj, pj)− c),

if it exists, at a level of pj such that its maximizing value intersects the monopoly profit function.

Since U1(q, t) < 0 for all q and t, (4.6) and (4.7) imply thatQ
C(ti, tj) < Q

M(ti) for allQ
C(ti, tj) 6= 1

2 .

The quantities QM(ti) and Q
C(ti, tj) are of interest because they completely define when each

of the first three equilibrium configurations are feasible:

Proposition 3. For any tA and tB:

10We adopt this approach because the best response functions involve a number of different cases, are often
discontinuous and provide little intuition or tractability in terms of either proving the existence of equilibria or
characterizing them.

19



Range of ti Value of QM(ti) Bounds on QM(ti)

2 ≥ ti ≥ r−c
r2 QM(ti) =

q
4(r−c)−r2ti

12ti

q
2(r−c)−r2

12 ≤ QM(ti) ≤ r
2

r−c
r2
≥ ti ≥ r−c

r(1−r) QM(ti) =
r−c
2rti

r
2 ≤ QM(ti) ≤ 1−r

2

r−c
r(1−r) ≥ ti ≥ 12(r−c)

4−3(1−r)2 QM(ti) =
1
3 −

q
4−3(1−r)2

36 − r−c
3ti

1−r
2 ≤ QM(ti) ≤ 1

3

ti ≤ 12(r−c)
4−3(1−r)2 QM(ti) =

1
2 −

Table 4.1: Functional form of QM(ti) in different ranges of ti for a linear loss function

Range of tj in terms of ti Value of QC(ti, tj) Bounds on QC(ti, tj)

tj ≥ 2( r−cr2 − ti) QC(ti, tj) =
q

4(r−c)−r2ti
4(3ti+2tj)

QC(ti, tj) ≤ r
2

2(r−c
r2
− ti) ≥ tj ≥ 2( r−c

r(1−r) − ti) QC(ti, tj) =
r−c

r(2ti+tj)
r
2 ≤ QC(ti, tj) ≤ 1−r

2

2( r−c
r(1−r) − ti) ≥ tj
≥ (A− 2ti +

p
A(A− ti))

QC(ti, tj) =
2ti+tj−

√
(2ti+tj)2−A(3ti+2tj)
2(3ti+2tj)

1−r
2 ≤ QC(ti, tj) ≤ 2ti+tj

2(3ti+2tj)

tj ≤ (A− 2ti +
p
A(A− ti)) QC(ti, tj) =

1
2 −

Note: A = 4(r − c) + ti(1− r)2

Table 4.2: Functional form of QC(ti, tj) in different ranges of ti and tj

(a) A local monopoly equilibrium is feasible only if QM(tA) +Q
M(tB) ≤ 1

2 ;

(b) A kinked equilibrium is feasible only ifQM(tA)+Q
M(tB) ≥ 1

2 , andQ
C(tA, tB)+Q

C(tB, tA) ≤
1
2 , and

(c) A competitive equilibrium is feasible only if QC(tA, tB) +Q
C(tB, tA) ≥ 1

2 .

For the linear loss function g(x) = x, Table 4.1 summarizes the values of QM(ti), along with

bounds on its value, for different ranges of ti. The derivation of these values is based on (4.6)

above. Analogously, Table 4.2 summarizes the computed values of QC(ti, tj), along with bounds

on its value, if any, for different ranges of ti and tj: These values are derived based on (4.7).

Based on the expressions in Table 4.1 and Table 4.2, we identify the different regions of the

(tA, tB) space in which different pure strategy price equilibria are feasible. Proposition 3 ensures

that a maximum of one equilibrium configuration is feasible in each region. Figure 4.3 illustrates

this partition, some mathematical details of which are presented in Appendix B.

Figure 4.3 shows that when both products have low scope (high t), then the feasible equilibrium

configuration is local monopoly. Both products provide positive but minimal effectiveness on the

core functionality of their rival product. Therefore, there ends up being no real strategic interaction

between the price and demand choices of the two firms, and each firm prices like a local monopolist,

leaving a portion of the market unserved by either. As either firm increases its scope, thereby

reducing ti, the gross value of the product increases for the non-adopting customers increases faster

than price. This gradually increases adoption, to the set of points represented by the curve KM

in Figure 4.3, where all consumers purchase one or the other product.

The feasible equilibrium configuration now transitions to a kinked equilibrium. The market is
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Figure 4.3: Illustrates the regions of the (tA, tB) space in which different equilibrium configura-
tions occur, showing how as scope increases, the feasible configuration shifts from local monopoly,
to kinked, to competitive. The curve CK, which is the entire curve separating the kinked and
competitive equilibrium regions, is referred back to in Proposition 7.

fully covered, yet neither firm finds it profitable to try and gain market share when their product’s

scope increases — the benefit of stealing an opponent’s customer by dropping prices is outweighed

by the corresponding loss in profit from their existing customer base. This behavior persists across

an entire range of (tA, tB) values.

Finally, when scope is high enough, firms start to compete for each others’ customers, thereby

entering the competitive equilibrium configuration region. Their markets overlap in a strategically

relevant way, since it is profitable to increase demand at the margin, even after accounting for the

losses in revenue from one’s own customer base. Consequently, under this equilibrium configuration,

prices are bilaterally reduced, and this is reinforced as platform scope increases, moving one away

from the curve CK.

4.4. Equilibrium demand and prices

Having identified the feasible pure-strategy Nash equilibria in each region, we now specify their

corresponding equilibrium q pairs. Denote the equilibrium choice of q by firm i as q∗i (ti, tj). Actual
realized demand will therefore be nq∗i (ti, tj).
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Equilibrium configuration: Local Monopoly

Range of values of ti Equilibrium q∗i (ti, tj)

2 ≥ ti ≥ (r−c)
r2 q∗i (ti, tj) =

q
4(r−c)−r2ti

12ti
(r−c)
r2
≥ ti ≥ (r−c)

r(1−r) q∗i (ti, tj) =
n(r−c)
2rti

(r−c)
r(1−r) ≥ ti ≥ 12(r−c)

4−3(1−r)2 q∗i (ti, tj) =
1
3 −

q
4−3(1−r)2

36 − (r−c)
3ti

Equilibrium configuration: Kinked

Relative values of QM(ti),Q
M(tj),Q

C(ti, tj) and Q
C(tj, ti) Range of equilibrium q∗i (ti, tj)

1
2 −QC(tj , ti) ≥ QM(ti) ≥ 1

2 −QM(tj) ≥ QC(ti, tj) 1
2 −QM(tj) ≤ q∗i (ti, tj) ≤ QM(ti)

QM(ti) ≥ 1
2 −QC(tj , ti) ≥ 1

2 −QM(tj) ≥ QC(ti, tj) 1
2 −QM(ti) ≤ q∗i (ti, tj) ≤ 1

2 −QC(tj , ti)
1
2 −QC(tj , ti) ≥ QM(ti) ≥ QC(ti, tj) ≥ 1

2 −QM(tj) QC(ti, tj) ≤ q∗i (ti, tj) ≤ QM(ti)
QM(ti) ≥ 1

2 −QC(tj , ti) ≥ QC(ti, tj) ≥ 1
2 −QM(ti) QC(ti, tj) ≤ q∗i (ti, tj) ≤ 1

2

Note: at any kinked equilibrium, q∗A(tA, tB) and q
∗
B(tB, tA) sum to 1

2 .

Equilibrium configuration: Competitive

Range of values of ti Equilibrium q∗i (ti, tj)
All feasible competitive equilibrium values qi(ti, tj) =

ti+2tj
6(ti+tj)

Table 4.3: Equilibrium quantity values for each equilibrium configuration

For the linear loss function g(x) = x, the derived equilibrium values are summarized in Table 4.3.

These expressions are obtained by deriving the form of the actual Nash equilibrium (pairs of q that

are best responses to each other), for each region in the (tA,tB) space, given the feasible equilibrium

configuration in this region11 depicted by Figure 4.3. When the local monopoly configuration is

feasible, Table 4.3 illustrates that there are three sub-segments, each with its corresponding unique

optimal qi(ti, tj). Similarly, when the competitive equilibrium configuration is feasible, there is a

unique equilibrium qi(ti, tj) for each firm i.

On the other hand, for each pair of t values at which a kinked equilibrium configuration is

feasible, there is a continuum of equilibrium q pairs. This is easily explained if one refers back to

Proposition 3(b). A kinked equilibrium configuration is feasible only if QM(ti) + Q
M(tj) ≥ 1

2 ,

and QC(ti, tj) +Q
C(tj , ti) ≤ 1

2 . When these inequalities are strict, there is a continuum of pairs

q∗A(tA, tB), q
∗
B(tB, tA) which sum to 1

2 , at which payoffs are strictly increasing along the monopoly

portions of the duopoly gross profit curves of both firms (because QM(ti) + Q
M(tj) >

1
2), and

at which payoffs are strictly decreasing along the competitive portion of the duopoly gross profit

curves of both firms (because QC(ti, tj) + QC(tj , ti) <
1
2). Each of these pairs is consequently a

Nash equilibrium.

Equilibrium prices P ∗i (ti, tj) under each equilibrium configuration are summarized in Table 4.4.

11This analysis, while straightforward, is very lengthy — a copy is available on request.
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Equilibrium configuration Range of values of ti Equilibrium price P ∗i (ti, tj)
Local monopoly 2 ≥ ti ≥ (r−c)

r2
2r+c
3 − r2ti

6

Local monopoly (r−c)
r2
≥ ti ≥ (r−c)

r(1−r)
r+c
2

Local monopoly (r−c)
r(1−r) ≥ ti ≥ 12(r−c)

4−3(1−r)2
(2r+c)
3 +

ti(1−3r(2−r)+
q
(1+3r(2−r))− 12(r−c)

ti
18

Kinked As specified in Table 4.3 PM(q∗i (ti, tj), ti)
Competitive All feasible values c+

r(ti+2tj)
6

Table 4.4: Equilibrium prices pairs under different equilibrium configurations

5. Duopoly: exogenous platform scope

This section uses the equilibrium results of Section 4 to analyze the duopoly model with an ex-

ogenously specified and symmetric scope level 1t . The results of this section apply to a scenario

in which the effectiveness of products in fulfilling different consumer requirements is not explicitly

chosen by the duopolists, but is largely determined by an exogenous factor — for instance, progress

in technology in an upstream industry, as in the case of semiconductor-based devices, or in a down-

stream industry (personal computers), as in the case of operating system or application software.

The analysis allows us to examine how the nature of competition, prices, profits and surplus vary

as scope changes, and their sensitivity to other exogenous model parameters at each feasible level

of scope. It also serves as a useful benchmark for the results of section 6.

5.1. Equilibrium

In each of the equilibria derived in this section, nq∗i (t), P
∗
i (t) and π∗i (t) denote the equilibrium

demand, price and payoffs to each of the firms i = A,B. The diagonal of the (tA, tB) graph in

Figure 4.3 represents the set of feasible equilibria when constrained to symmetric choices of scope.

This suggests that as scope increases, and t falls, the equilibrium configuration will move from being

local monopoly, to kinked, to competitive. These equilibria are characterized in the following three

propositions:

Proposition 4. If both products have identical and exogenously specified scope 1t , a local monopoly

equilibrium configuration is feasible if and only if t > 2(r−cr ). The unique equilibrium outcomes

are:

(a) If 2 ≥ t ≥ (r−c)
r2
: demand is nq∗i (t) = n

q
4(r−c)−r2t

12t , prices are P ∗i (t) =
³
2r+c
3 − r2t

6

´
, and

payoffs are π∗i (t) =
n
6

q
(4(r−c)−r2t)3

12t , for i = A,B

(b) If (r−c)
r2
≥ t ≥ 2 (r−c)r : demand is nq∗i (t) =

n(r−c)
2rt , prices are P

∗
i (t) =

r+c
2 , and payoffs are

π∗i (t) =
n(r−c)2
4rt , for i = A,B.

As one would expect, these equilibrium pairs are identical to the corresponding monopoly

outcomes under partial market coverage. The variation of demand, price and profits for each firm
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Figure 5.1: Depicts the duopoly demand and prices as a function of scope 1
t , for symmetric scope.

Demand rises steadily in the local monopoly region, after which it is constant at n4 . Prices continue
to rise in the kinked region, before falling rapidly in the competitive region.

is as discussed in section 3.2. Figure 5.1 plots the variation in demand and price with scope 1
t .

The first segment of the graphs depicts that in the local monopoly equilibrium, both demand and

prices increase as scope is increased.

As t falls below 2(r−cr ), the outcome transitions to one of a continuum of kinked equilibria:

Proposition 5. If both products have identical and exogenously specified scope 1t , a kinked equi-

librium configuration is feasible if and only if 43(
r−c
r ) ≤ t ≤ 2(r−cr ). For each value of t, there is a

continuum of equilibrium pairs (q∗A(t), q
∗
B(t)), as specified in Table 4.3.

(a) In the unique symmetric equilibrium, q∗A(t) = q
∗
B(t) =

1
4 . Therefore, demand is nq

∗
i (t) =

n
4 ,

prices are P ∗i (t) = r(1− t
4), and payoffs are π

∗
i (t) = n(

r−c
4 − rt

16), for i = A,B.

(b) For each asymmetric pair (q∗A(t), q
∗
B(t)), equilibrium demand is nq∗i (t), equilibrium prices

are P ∗i (t) = U(
1
2 + q

∗
i (t), t), and equilibrium payoffs are π∗i (t) = nq∗i (t)[P ∗i (t)− c], for i = A,B.

We choose the symmetric equilibrium q∗A(t) = q∗B(t) =
1
4 for further discussion. Apart from

being symmetric, it is also feasible in all four ranges of ti and tj specified in Table 4.3. Moreover,

among all the kinked equilibria, it is the one that maximizes total surplus. As depicted by Figure

5.1(b), under this kinked equilibrium, prices continue to increase as t falls and scope 1
t increases.

In other words, as the products become less differentiated, prices rise rather than fall. Moreover,

these prices are not only higher than the prices charged when the firms are each local monopolists,

but they are higher than the corresponding single-firm profit-maximizing prices.

This unusual equilibrium response is a consequence of the relative slopes of the monopoly and

competitive regions of the duopolist’s profit function. In a kinked equilibrium, both duopolists are

at the transition point between the monopoly and the competitive portions of their respective gross

profit functions. The slope on the monopoly portion is positive, which would induce a monopolist
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to increase realized demand. However, the presence of the rival duopoly firm makes this demand

increase impossible without reducing profits (because the slope of the competitive portion of the

gross profit function is negative). As a consequence, the equilibrium response to this tension ends

up being an increase in price, rather than in realized demand12.

The equilibrium increase in prices in response to a reduction in t is not restricted to the sym-

metric kinked equilibrium. Note that for any kinked equilibrium, P ∗i (t) = U(
1
2+q

∗
i (t), t), and since

U2(y, t) is negative, the equilibrium response to an increase in scope 1
t is an increase in price, so

long as the firms stay at the same equilibrium pair13 (q∗A(t), q
∗
B(t)).

Finally, when scope is increased to the point where t falls below 4
3(
r−c
r ), the equilibrium con-

figuration becomes competitive:

Proposition 6. If both products have identical and exogenously specified scope 1
t , a competitive

equilibrium configuration is feasible if and only if t < 4
3(
r−c
r ).The unique equilibrium outcomes are:

demand nq∗i (t) =
n
4 , price P

∗
i (t) = c+

rt
2 , and payoff π∗i (t) =

nrt
8 , for i = A,B.

This equilibrium outcome is similar, though not identical, to that of the standard circular

differentiated-products duopoly. The firms always split the market; as t decreases and scope rises,

prices fall as depicted in Figure 5.2(b). The decline in prices is proportionate to t, and rapidly

pulls the duopoly prices below the corresponding single-firm price.

5.2. Sensitivity to costs and breadth of consumer requirements

Inspection of the price expression in Proposition 6 indicates that prices rise as the breadth of

functionality requirements of customers r increases. This is interesting, because much like an

increase in platform scope 1t , an increase in r has two effects — it increases the value of each product

for all consumers, but simultaneously reduces the level of product differentiation. Proposition 6

shows that in a competitive equilibrium configuration, the former effect dominates the latter, which

is in stark contrast to the effect of increasing platform scope. This effect persists across the other

two equilibrium configurations as well — any marginal increase in r always raises prices and profits.

This is not surprising for local monopoly, and complements a similar scope effect in the case of

the kinked equilibrium. More importantly, it highlights the importance of separating changes in

the level of product differentiation that are a result of platform scope choices, and those that are a

result of changes in consumer needs.

Reducing the unit variable cost c generally does affect prices — however, the impact varies

substantially with equilibrium configuration. In the competitive equilibrium configuration, when

unit costs fall, the entire cost reduction is transferred to the customers, which is reflective of a high

12This effect is analogous to Salop’s result of prices increasing as costs reduce — the source of tension is similar (an
inability to increase realized demand as a consequence of the presence of the rival firm).
13For small changes in t, this pair will continue to be a feasible kinked equilibrium so long as it is not at one of the

end-points of the q∗i (t) intervals specified in Table 4.3.
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Figure 5.2: Depicts the duopoly profits and surplus as a function of scope 1
t , for symmetric scope.

Gross profits increase with scope in the monopoly and kinked region, before falling in the com-
petitive regions — they are always lower than the corresponding monopoly profits. Total surplus is
strictly increasing across all scope values and equilibrium configurations. This is because product
value increases for all customers as scope increases. Equilibrium consumer surplus (the difference
between the duopoly total surplus and duopoly profit curves in (b)) increases across the local
monopoly and competitive regions, but falls slightly in the kinked region, in response to the rapid
increase in price. In addition, gross total surplus is strictly higher under duopoly than under
monopoly — even under full market coverage in both regimes, there are two products in duopoly,
and hence total value created is higher.

degree of competition. Under local monopoly, there is a downward price adjustment which raises

realized demand, results in the benefits being shared by the buyers and sellers, and is consistent

with the monopolistic nature of the equilibrium. However, in a kinked equilibrium configuration,

the entire benefit of the cost reduction is absorbed by the duopolists, with no transfer of surplus

to the buyers.

Beyond these local effects within an equilibrium configuration, changes in r and c also affect

the relative sizes the of the regions of t under which each equilibrium is feasible. It is easily seen

that ( r−cr ) is increasing in r and decreasing in c. Consequently, an increase in the breadth of

functionality requirements, or a reduction in unit costs both decrease the range of scope values in

which both local monopoly equilibria and kinked equilibria are feasible, and increases the ranges

of scope values for which the outcome is a competitive equilibrium.

5.3. Profits and welfare

Consistent with a scenario where scope is exogenous, we examine comparative statics of the gross

profits and surplus as scope varies. As shown in Figure 5.2(a), gross profits are strictly increasing

in scope in the local monopoly and kinked equilibrium regions. This reflects increases in both

equilibrium prices and demand in the local monopoly region, and increases in price at a constant
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Range of values of t Equilibrium configuration Total surplus Consumer surplus

2 ≥ t ≥ r−c
r2 Local monopoly 2n

9

q
(4(r−c)−r2t)3

3t
n
18

q
(4(r−c)−r2t)3

3t
r−c
r2 ≥ t ≥ 2(r−cr ) Local monopoly n

4 [
3(c−r)2
rt − r3t

3 ]
n
4 [
(c−r)2
rt − r3t

3 ]

2( r−cr ) ≥ t ≥ 4
3(
r−c
r ) Kinked n

2 [(r − c)− rt(3+4r2)
24 ] nt[3−2r(4r2−6r+3)]

96
4
3(
r−c
r ) ≥ t ≥ 0 Competitive n

2 [(r − c)− rt(3+4r2)
24 ] nt[3−2r(4r2−6r+3)]

96

Table 5.1: Gross total surplus and consumer surplus with exogenous t

demand of n4 in the kinked region. However, in the competitive regions, increases in scope reduce

profits — an expected outcome, since demand continues to be n4 , and prices decrease
14. In addition,

per-firm duopoly gross profits are lower that the corresponding single-firm gross profits in the

kinked15 and competitive regions (and substantially so in the latter case).

If both firms choose the same q value, then the duopoly gross total surplus under this choice is:

sD(q, t) = 2n

qZ
0

(PM(x, t)− c)dx, (5.1)

and consumer surplus is simply the difference between sD(q, t) and total profits. Table 5.1 summa-

rizes the functional forms of gross total surplus and consumer surplus for the different equilibrium

outcomes. As illustrated in Figure 5.2(b), gross total surplus in a duopoly is strictly increasing as

scope increases. Equilibrium consumer surplus increases with scope across the local monopoly and

competitive configurations, but falls in the kinked region. Moreover, gross total surplus is strictly

higher than the corresponding surplus under monopoly. Of course, this comes at the cost of two

investments in the fixed cost of scope, rather than just one, and our welfare analysis of duopoly

with endogenous scope, in Section 6, explores this issue further.

6. Duopoly: endogenous platform scope

We now analyze the game where firms make simultaneous first stage investments in platform scope,

followed by a simultaneous choice of prices in the second stage. While we characterize some of the

asymmetric subgame-perfect equilibria that exist, we fully specify and discuss only the pure strategy

equilibria which involve symmetric choices of scope. To ensure that the payoff functions for the

game are well-defined for all out-of-equilibrium action pairs, we restrict the first-stage action spaces

of the firms to those values of scope for which second-stage pure strategy pricing equilibria exist16.

14This also suggests that under endogenous and costless choices of scope, the level of scope at the boundary between
the kinked and competitive regions is a likely symmetric equilibrium. This is explored further in Section 6.
15The fact that profits are strictly lower is due to our choosing the kinked equilibrium with symmetric scope.

However, one can use Proposition 3(b) to show that in the kinked equilibrium most favorable to a firm, that firm’s
profits are bounded above by (though sometimes equal to) the corresponding monopoly profits.
16More precisely,there are portions of the (tA, tB) space (where the values of tA and tB are substantially different)

in which no pure strategy equilibrium pairs of q may exist. It is possible that mixed-strategy equilibria do exist, but
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6.1. Marginal incentives for scope investments

In this sub-section, we characterize the marginal impact of a first-stage change in scope, when this

change leaves firms within the same equilibrium configuration in the second stage. The main result

is that within an equilibrium configuration, the marginal effect of changing ti on firm payoffs is

always strictly monotonic.

Lemma 4. Consider any pair (tA, tB) for which a pure-strategy price equilibrium exists. If (tA, tB)

is such that small changes in ti do not change the second-stage equilibrium configuration, then:

(a) If the equilibrium configuration is local monopoly, d
dti
πi(q∗i (ti, tj), ti, tj , P ∗j (tj, ti)) < 0.

(b) If the equilibrium configuration is kinked, d
dti
πi(q∗i (ti, tj), ti, tj, P

∗
j (tj , ti)) < 0.

(c) If the equilibrium configuration is competitive, d
dti
πi(q∗i (ti, tj), ti, tj, P

∗
j (tj , ti)) > 0.

Note that the derivatives in Lemma 4 are total derivatives (which include adjustments for the

equilibrium second-stage changes in q∗i (ti, tj) and P ∗j (tj , ti) that occur when one changes ti). The
lemma therefore shows that under any first stage choice (tA, tB) for which small changes in ti do

not change the resulting equilibrium configuration of the second-stage pricing game, each firm can

increase their gross profits by making appropriate changes in their choice of scope.

6.2. Equilibrium with zero marginal cost of platform scope

In this section, we solve for and discuss the subgame perfect pure strategy equilibria for the endoge-

nous scope game when firms can costlessly choose any level of scope — that is, when F1(t) = 0 for

all t. This can be viewed as the limiting case in a scenario where technology progress reduces the

cost of platform scope. The following proposition characterizes the subgame perfect pure strategy

equilibria:

Proposition 7. (a) When F1(t) = 0, there is a unique symmetric subgame perfect equilibrium, in

which:

(i) t∗A = t
∗
B =

4
3(
r−c
r );

(ii) q∗A(t
∗
A, t

∗
B) = q

∗
B(t

∗
B, t

∗
A) =

1
4 ;

(iii) P ∗A(t
∗
A, t

∗
B) = P

∗
B(t

∗
B, t

∗
A) =

c+2r
3 , and

(iv) πA(q∗A(t
∗
A, t

∗
B), t

∗
A, t

∗
B, P

∗
A(t

∗
A, t

∗
B)) = πB(q∗B(t

∗
B, t

∗
A), t

∗
B, t

∗
A, P

∗
B(t

∗
B, t

∗
A)) =

1
6(r − c).

(b) In addition, there is a continuum of subgame perfect pure strategy Nash equilibria with

asymmetric choices of scope. In each of these equilibria, first-stage choices (t∗A, t
∗
B) result in kinked

equilibrium configurations in the second stage pricing game, and are on the boundary between the

their derivation is beyond the scope of this paper. A simple way around this problem (used by Economides 1984, for
instance) is to set the payoffs of both firms to zero for these pairs of values. Note that pure-strategy equilibria always
exist for all symmetric pairs tA = tB , and these are the equilibria we discuss in most detail.
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regions where kinked equilibria and competitive equilibria are feasible — that is, on the curve CK

in Figure 4.3.

Proposition 7 implies that when firms can endogenously and costlessly choose platform scope,

the choices are such that the equilibrium level of competition is not particularly intense. It is

somewhat striking (though not surprising) that even when scope is costless, firms should limit

the value provided by their products, if they can do so. An increase in platform scope makes

the products more valuable to their consumers and hence allows them to charge a higher price.

Simultaneously, however, a high level of scope also reduces the level of differentiation between

the two products, which can result in intense price competition if the second-stage equilibrium

configuration is competitive. This is the central trade-off presented by digital convergence that we

highlighted in the beginning of the paper, and the firms’ choices are driven by the need to balance

these two conflicting incentives.

Interestingly, the equilibrium prices are higher than they would be under monopoly provision

of a product with the same scope. In fact, if one refers back to Figure 5.1(b), the equilibrium

choice of t is at the point where prices are as high as is possible under any symmetric second-stage

equilibrium. Moreover, a reduction in marginal costs lead to lower equilibrium choices of platform

scope. As a consequence, reduced variable costs c do lead to lower prices17, although firms pass

on only a small fraction of the savings to the consumers. Recall from Section 5 that under a

kinked equilibrium configuration with exogenous platform scope, the duopolists did not reduce

prices when c was reduced — the effect of changes in c on price in this endogenous case is therefore

entirely indirect, through the equilibrium change in the choice of scope.

When F1(t) = 0, the welfare maximizing choice is to provide infinite scope, or to set t =

0. The equilibrium level of scope chosen by the duopolists is thus socially insufficient. At the

socially efficient level of platform scope, each product satisfies every functionality requirement of

the consumer perfectly, thus resulting in the highest amount of surplus possible, but also making

the products perfect substitutes, and leading to Bertrand competition. Interestingly, a single

product (or multiproduct) monopolist would find it optimal to provide an infinite level of scope

in her products, achieving the first best outcome. However, the monopolist would also end up

appropriating the entire value created, leaving no surplus to the consumers.

6.3. Equilibrium with costly platform scope

When F1(t) < 0 (that is, if fixed costs increase as scope
1
t increases) firms may find it profitable to

choose a level of scope lower than the equilibrium value derived in Proposition 7. In this section,

we discuss some such cases in which a unique subgame perfect symmetric equilibrium exists.

In the first stage, firm i’s net profit function, after accounting for the cost of scope, and the

17This is in contrast with the unusual result obtained under the kinked equilibrium in Salop (1979), where prices
rose as marginal costs fell.
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Figure 6.1: Depicts equilibrium scope investments for different costs of scope, when there is a
unique solution. Equilibrium duopoly scope decreases as the marginal cost of platform scopeF1(t)
falls. When this curve lies entirely above the marginal gross profit curve , the result of Proposition
7 continues to hold.

second-stage equilibrium choices of q and price, is:

Πi(ti, tj) = πi(q∗i (ti, tj), ti, tj, P
∗
j (tj , ti))− F (ti).

Since F1(t) < 0, it is clear from Lemma 4(c) that Πi1(ti, tj) > 0 for any pair (tA, tB) that results

in a competitive equilibrium configuration in the second stage. As a consequence, such a pair can

never be an equilibrium choice. Since we look for equilibria with symmetric choices of scope, the

problem therefore reduces to finding values of t such that for i = A,B:

4(r − c)
3r

≤ t ≤ 2, (6.1)

Πi1(t, t) = 0, and (6.2)

Πi11(t, t) < 0. (6.3)

If such values of t do not exist, we examine the value of Πi1(t, t) at the end-points t =
4(r−c)
3r and

t = 2.

In general, the outcome of the game is crucially dependent on the slope of the fixed cost curve

F1(t). If there is a unique point t
∗
d which satisfies (6.1) - (6.3), then this is the unique symmetric
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Figure 6.2: Depicts equilibrium scope investments for different costs of scope, when the solution
is unique and in the interior. Partial market coverage leads to under-investment, and full market
coverage to over-investment — which is identical to the outcome under monopoly.

equilibrium. The curves (b) and (c) in Figure 6.1 illustrate this situation, when this point of

intersection is in the local monopoly and kinked equilibrium regions respectively. Alternately,

the curves (a) and (d) in Figure 6.1) illustrate the outcome if there is no point satisfying (6.1)

and (6.2). If F1(t) lies entirely above the second-stage equilibrium marginal profit curve, then

the unique symmetric subgame perfect equilibrium is t∗d =
4
3(
r−c
r ). This is the same outcome as

obtained in section 6.2, and strengthens that result, to the extent that Proposition 7 continues to

hold if the cost of scope is non-zero but increases slowly with scope.

On the other hand, if F1(t) lies entirely below the second-stage equilibrium marginal profit

curve, then the unique symmetric subgame perfect equilibrium is t∗d = 2. This outcome is driven
entirely by our restriction on the permissible range of t, and so we do not interpret it further. If

there is a unique value t∗d that satisfies conditions (6.1) and (6.2), but not (6.3), then it is a local
minimum. In this case, both end-points are candidate equilibria. Very little can be said in the

case where there are multiple points which satisfy (6.1) and (6.2).

In a duopoly market structure, the socially optimal level of scope t∗ (with the firms then choosing
equilibrium prices at this level of scope) satisfies:

t∗ = argmax
t
sD(q∗(t), t)− 2F (t). (6.4)
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Under each of the interior outcomes depicted in Figure 6.1, the following proposition holds:

Proposition 8. If there exists a unique symmetric equilibrium value t∗d satisfying (6.1) - (6.3),
then

(i) If t∗d >
2(r−c)
r then t∗d > t

∗.

(ii) If t∗d ≤ 2(r−c)
r then t∗d < t

∗

Proposition 8 establishes that for any unique interior solution, the duopolists under provide

scope as compared to the social optimum if the equilibrium configuration in the second stage is

local monopoly, and over-provide scope if it is a kinked equilibrium. The similarity of this result

to the one established in Proposition 2 becomes obvious once one recognizes that under a local

monopoly equilibrium in the second stage of the game, the market is only partially served, while

under a kinked equilibrium regime, the market is fully served. This is discussed further in Section

8.

7. Higher breadth of functionality requirements

The analysis in sections 3 through 6 assumed that r ≤ 1
2 — in this section, we outline some unique

features of the model when r > 1
2 . We describe the changes in the inverse demand function and

the resulting variation in monopoly outcomes. Next, we discuss the existence and properties of

the fourth kind of duopoly equilibrium configuration — the non-exclusive equilibrium. Finally, we

illustrate how when platform scope is low and r is close to 1, outcomes where consumers purchase

both products can occur even when the equilibrium configuration is local monopoly.

7.1. Monopoly

When one admits higher values of r, the value function derived in (3.3) changes. For r > 1
2 , this

function U(y) is:

U(y, t) =

r − t £G(1+r2 − y) +G(y − 1−r
2 )
¤

for 12 ≤ y ≤ 2−r
2 ;

r − t £2G(12) +G(1+r2 − y)−G(1− (y − 1−r
2 ))

¤
for 2−r2 ≤ y ≤ 1+r

2

r − t £2G(12)−G(y − 1+r
2 )−G(1− (y − 1−r

2 ))
¤

for 1+r2 ≤ y ≤ 1
(7.1)

This new value function shares all the properties presented in Lemma 1, except that sign[U11(y, t)] =

sign[g11(x)] for
1−r
2 ≤ y ≤ r

2 . Proceeding as in section 3.1, the gross profit function with a linear

loss function can be derived:

π(q, t) =

nq(r − c)− ntq(q2 + r2

4 ) for 0 ≤ q ≤ 1−r
2 ;

nq(r − c)− ntq(q(1− r) + 2r−1
4 ) for 1−r2 ≤ q ≤ r

2 ;

nq(r − c)− ntq(q(1− q)− (1−r)2
4 ) for r2 ≤ q ≤ 1

2 .

(7.2)
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Range of values of t Equilibrium configuration Demand per firm Equilibrium prices

4 ≥ t ≥ 4(r−c)
4r2−6r+3 Local monopoly nq∗(t) = n

r
r−c− r2t

4
3t P ∗(t) = 2r+c

3 − r2t
6

4(r−c)
4r2−6r+3 ≥ t ≥ 4(r − c) Local monopoly nq∗(t) = n(4(r−c)−t(2r−1))

8t(1−r) P ∗(t) = 4(r+c)−t(2r−1)
8

4(r − c) ≥ t ≥ 4(r−c)
2−r Kinked nq∗(t) = n

4 P ∗(t) = r(1− t
4)

4(r−c)
2−r ≥ t ≥ 0 Competitive nq∗(t) = n

4 P ∗(t) = c+ t(1−r)
2

4(r−c)
2−r ≥ t ≥ 128

9 c Non-exclusive (for high r) see Table 7.3 see Table 7.3

Table 7.1: Duopoly equilibrium configurations and outcomes for r > 0.5

While the ranges of q values are different, reflecting the fact that r
2 >

1−r
2 for r > 1

2 , the actual

functional form of π(q, t) is the same in two of the three segments. Results analogous to Lemma

2 and Proposition 1, are obtained for the optimal demand, price and profits. The main effect

of increasing r beyond 1
2 is that full market coverage becomes increasingly more likely. This

is illustrated most starkly when marginal costs are zero. In this case, full market coverage is

always optimal. That is, when c = 0, for any r > 1
2 , and for any value of t ≤ 2, q∗(t) = 1

2 ,

P (q∗(t), t) =
³
r − tr(2−r)

4

´
, and π(q∗(t), t) = n

³
r
2 − tr(2−r)

8

´
.

7.2. Duopoly: non-exclusive and incremental purchases

For high enough price levels, the structure of the inverse demand curves remain as described in

(4.2), (4.3), and (4.4) of Section 4, though the expressions are now based on the U(y, t) functions

in (7.1), since r > 1
2 . The first three equilibrium configurations — local monopoly, kinked, and

competitive — continue to be feasible, and when a symmetric level of t is exogenously specified to

both firms, exactly one of these three configurations occur in each segment of the permissible range

of t value. Though the ranges themselves are different, the basic structure derived in Section 5

is preserved — as t decreases, the equilibrium transitions from local monopoly to kinked, and then

from kinked to competitive. Table 7.1 summarizes the relevant ranges of t, and the corresponding

outcomes. At r = 1
2 , the results coincide with the corresponding results derived in Section 5, and

there is therefore no discontinuity. Directionally, the comparative statics discussed in Section 5 are

preserved, except those relating to the impact of changing r.

More importantly, the fourth kind of equilibrium configuration described in Section 4.2 is feasible

for r > 1
2 . It arises when prices fall to the point where, rather than trying to get consumers to

switch products, incremental demand is driven by inducing them to buy a second product. As a

consequence, the inverse demand function of firm i is determined not by the difference in total value

between the two products, but by the incremental value that product i provides to a consumer who

already owns product j.

Under symmetric scope across products, let I(y, t) be the incremental value function, which

specifies the additional value that the consumer located at a distance q ∈ [0, 12 ] from product i
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Figure 7.1: Illustration of how the incremental value function I(y, t) is determined.

Range of values of r Incremental value function I(y, t)

1
2 ≤ r ≤ 3

4

I(y, t) = t
8 for 12 ≤ y ≤ 1+2r

4
I(y, t) = t[18 − t(y − 1+2r

4 )2] for 1+2r4 ≤ y ≤ 1+r
2

I(y, t) = t(3+2r4 − y)2 for 1+r2 ≤ y ≤ 5−2r
4

I(y, t) = t[(3+2r4 − y)2 + (y − 5−2r
4 )2] for 5−2r4 ≤ y ≤ 1

3
4 ≤ r ≤ 1

I(y, t) = t
8 for 12 ≤ y ≤ 1+2r

4
I(y, t) = t[18 − t(y − 1+2r

4 )2] for 1+2r4 ≤ y ≤ 5−2r
4

I(y, t) = t(3+2r4 − y)2 for 5−2r4 ≤ y ≤ 1+r
2

I(y, t) = t[(3+2r4 − y)2 + (y − 5−2r
4 )2] for 1+r4 ≤ y ≤ 1

Table 7.2: Analytical form of the incremental value function I(y, t)

obtains from product i if she already owns product j. The function is defined recursively as:

I(q +
1

2
, t) =Max[0, U(q +

1

2
, t)− U(1− q, t) + I(1− q, t)].

Figures 7.1 illustrate the function I(y, t). The function becomes economically relevant when neither

product dominates the other on all of a consumer’s desired functionalities18.

Table 7.2 summarizes the algebraic expressions of I(y, t) for the linear loss function. For r ≥ 1
2 ,

I(y, t) is monotonically decreasing in y, but positive everywhere. Under symmetric scope, the

consumer who has the highest incremental value from a second product will be located at y = 3
4 .

This consumer will be indifferent between the two products when their prices are equal. If pj ≤
I(34 , t), the inverse demand function changes slope discontinuously from its value in the competitive

region and a third region, which we term the non-exclusive region, emerges. The demand function in

this non-exclusive region is more elastic than in the corresponding competitive region, and actually

18If product j provides a higher quality than product i on the entire range of functionalities that a consumer
cares about, then this incremental value is simply zero. If on the other hand, product i is superior to product j on
the entire relevant range of functionalities, the incremental value is simply the difference between the gross values
provided by the two products. In either of these cases, under symmetric prices, consumers have no incentive to buy
both products.
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Range of values of r Equilibrium demand per firm Equilibrium prices

3−√3
2 ≤ r ≤ 9−√5

8 nq∗(t) = n(2r−16 +
√
4r2−4r+7
12 ) P ∗(t) = t

8 −
(
√
t(1−2r)2+

√
(7−4r(1−r))t)2

144
9−√5
8 < r ≤ 7

8 nq∗(t) = n(5−4r)
32(1−r) P ∗(t) = (5−4r)t

16

7
8 < r ≤ 1 nq∗(t) = n

2 P ∗(t) = t1−2r)2
8

Table 7.3: Equilibrium outcomes under the non-exclusive equilibrium configuration

has the same slope as the monopoly inverse demand function. This is depicted in Figure 4.2(b). In

summary, for pj ≤ I(34 , t):

Pi(qi, t, t, pj) = U(qi +
1

2
, t)− U(1− qi, t) + pj for 0 ≤ qi ≤ qNE; (7.3)

= I(qi +
1

2
, ti, tj) for qNE ≤ qi ≤ 1

2
,

where qNE is defined using the equation I(1− qNE , t) = pj .
For a high enough value of r, a symmetric non-exclusive equilibrium always exists. Table

7.3 summarizes the equilibrium outcomes for different values of r, when marginal costs are zero.

Figures 7.2 and 7.3 illustrate these outcomes, depicting the equilibrium demand nq∗(t) and prices
P ∗(t) as a function of r. Given the diametrically opposite location of firms at 12 and 1, an equilibrium
demand of nq > n

4 implies that the markets start overlapping in the middle, and that consumers

located at y ∈ [1− q, 12 + q] buy both products.
Of particular interest is the case of r ≥ 7

8 , where every consumer in the market buys both

products, and prices drop to the incremental value of the consumer who values the product the least.

This price is far lower than the actual value that any consumer gets from the product she buys, and

is also lower than the corresponding competitive equilibrium price at the same level of scope. As a

result, the consumer surplus will be much higher under the non-exclusive equilibrium. Interestingly,

total surplus is also strictly higher than under the competitive equilibrium configuration at the same

level of scope, because a fraction (sometimes all) of consumers buy both products, and use the more

efficient of the two products to satisfy their functionality requirements.

7.3. Duopoly: very low platform scope

Finally, we discuss a market in which products have very low scope — when t > 4 With a linear

loss function, the fraction of functionalities a product covers is 2t and hence t > 4 implies that each

product covers less than half the functionalities demanded in the market. Clearly, there is no overlap

in the set of functionalities provided by the two products. Each firm is a local monopolist, and

prices accordingly. However, at very high levels of r, both products may provide some consumers

with positive value, on distinct subsets of their desired functionalities.

We consider a specific example, where t > 4, 1 − 1
t ≤ r ≤ 1, and the loss function g(x) = x.
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Figure 7.2: Depicts non-exclusive equilibrium demand. When r is sufficiently higher than 1
2 , the

incremental value is high enough to induce equilibrium in which some consumers buy both products.
As r increases, the number of non-exclusive purchases also increases, until after a critical value,
when all consumers buy both products.
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36



Range of values of r Equilibrium demand per firm Equilibrium prices

1− 1
t ≤ r ≤ 5t−2−√t2−4t+20

4t nq∗(t) = n(2rt−4+
√
rt(rt−4)−28)
6t P ∗(t) = 24−(rt−2)2+(rt−2)

√
rt(rt−4)+28

36t
5t−2−√t2−4t+20

4t ≤ r ≤ t2−2
t2

nq∗(t) = 2+t(1−r)(t−2)
4t2(1−r) P ∗(t) = 2+t(1−r)(t−2)

4t

t2−2
t2
≤ r ≤ 1 nq∗(t) = n

2 P ∗(t) = (2−t(1−r))2
4t

Table 7.4: Equilibrium demand and prices for very low scope levels

Under these constraints, the consumer’s value function is19:

U(y, t) =

1
t for 12 ≤ y ≤ 1+r

2 − 1
t ;

1
2t − (y − 1+r

2 )(1 +
t
2(y − 1+r

2 )) for 1+r2 − 1
t ≤ y ≤ 3−r

2 − 1
t

1
t − (1− r)(1 + t(1− y)) for 3−r2 − 1

t ≤ y ≤ 1+r
2

1
t − (1− r) + t((1− y)2 + (1−r2 )2) for 1+r2 ≤ y ≤ 1

(7.4)

Refer to Figure 7.4 for the intuition underlying the derivation of U(y, t).

The profit function is similar to the monopoly profit function — there is at most one interior

maximum, and profits are maximized either at this interior point, or at full market coverage.

For c = 0, the optimal (local monopoly equilibrium) choices for the symmetric duopolists are

summarized in Table 7.4. Even though the firms are local monopolists and do not influence each

others prices or profits, it is clear that in equilibrium, there is some overlap in the consumers served

by both products20. As the span of consumers’ functionality requirements increases, a larger fraction

of the consumers buy both products. For values of r sufficiently close to 1, all consumers in the

market buy both products.

This example is particularly interesting when contrasted with the other non-exclusive equi-

librium described in Section 7.2. It suggests that as digital technology progresses, equilibrium

outcomes may be such that consumers start by buying multiple specialized products, then switch

to a single general-purpose product, and then finally buy multiple products again, using the ad-

ditional powerful general-purpose products as if they were specialized. We discuss this further in

Section 8.

8. Discussion

We have developed and presented a model that provides a careful and detailed representation of

how technology platforms fulfil diverse consumer functionality requirements, how the effectiveness

of these products varies with platform scope, and how this affects product value and differentiation.

The model itself is a new contribution to the economics of imperfect competition — it generalizes

two influential approaches to modeling product differentiation (Salop’s and Lancaster’s). We hope

19Interestingly, with non-overlapping functionalities provided by the two products, a product’s value function is
identical to the incremental value function that was used in deriving the non-exclusive equilibrium in the last section.
20At the margin, with t = 4 and r = 1− 1

4
= 3

4
, q∗(t) ' 0.29 > 1

4
.
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Figure 7.4: Depicts the value function for products with very low scope, focusing on parameter
values such that 1− 1

t ≤ r ≤ 1. The integral expressions are similar to those in Figure 3.1 (though
not identical). The products are completely distinct in the set of functionalities that they cover
with positive effectiveness. Since r is high, while a subset of customers only derives value from one
or the other product, a majority of them place a positive value on both products.
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it will enable deeper analysis into some of the issues we have raised, especially since an increasing

fraction of products and services in the economy are digital.

Moreover, since we have solved the model comprehensively, characterized the structure of the

equilibria, and derived the usual measures of interest (prices, demand, profits and surplus), this

enables us to explain some unique aspects of digital convergence in product markets, to predict

likely outcomes, and to provide prescriptions for the relevant firms, and for policy makers.

8.1. Product differentiation, platform scope and price trends

Any standard model of product differentiation would suggest that as differentiation falls, so do

prices. Our analysis shows that in the case of converging technology products, this is not always

true. In fact, as markets that were distinct begin to overlap, prices rise in response to reduced dif-

ferentiation. Subsequently, at a critical level of platform scope, the cost of increased substitutability

outweighs the benefit of increased value, and prices do fall. This trend is consistent with the recent

convergence in the mobile telephony and handheld computing industries. Following the launch of

flagship and mainstream converged devices from both industries (the Palm-based Handspring Treo,

and the Symbian-based Nokia Communicator), average prices for these devices are actually higher

than those that prevailed when the flagship products from each of these device makers was more

specialized. This is despite an evident increase in the overlap in their functionality. Our model

predicts this phase, and indicates that while it will sustain for a while, it will be followed by rapid

price declines across both industries, when technology progresses to the point where they enter the

competitive equilibrium configuration.

8.2. Strategic choices of platform choice

If firms in converging technology markets can decide the level to which they should expand their

platform scope, our analysis prescribes that after a point, their choices should be determined

purely by strategic considerations. As described in section 6, even when expanding platform scope

is costless, firms that make strategically sound decisions will limit the extent to which they fulfill

customer needs, even if more extensive fulfillment is technologically viable.

In addition, a firm’s choice of platform scope may also be influenced by competition from within

one’s industry (rather than the fear of overlapping with an adjacent provider). A shortcoming of

our existing model is that we do not explicitly consider this effect. However, our analysis in

Section 5, which characterizes outcomes when firms cannot explicitly control the scope of their

platforms, becomes more relevant in this context. By explaining how firms will behave when they

are forced to vary scope, and when the only strategic variable they can control is price, we can

predict that if there are intra-industry competitive factors that dictate platform scope choices,

converging markets will eventually transition into the competitive equilibrium configuration, with

prices falling as platform scope increases.
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In fact, converging into a different industry may be a strategic response to increased competition

(this may explain, for instance, why Handspring chose to incorporate voice communication into

their product via the Springboard). A more precise analysis of competition within each duopolist’s

location, as well as the threat of convergence-driven overlap from a neighboring industry, remains

research in progress.

8.3. Welfare and policy implications

We find that the market generally does not provide the socially efficient level of scope. What is

surprising is the direction in which the market errs. Intuitively, under complete market coverage,

when there is no incentive to recruit new consumers, one would expect firms would slacken on

their provision of platform scope. However, we find that this is precisely the scenario under which

firms provide a level of scope which is socially excessive. Correspondingly, when only a subset of

the consumers in the market purchase the product, the firms underprovides scope. This result

is independent of market structure — it persists under both single-product monopoly and duopoly,

and we can easily show that it holds for multi-product monopoly as well.

It is likely that universal access will become a social priority for mobile telephony and Internet

access, as the use of these services supersede wireline telephony as the primary mode of access

to emergency police or medical services, or simply if public policy dictates equitable access to

electronic forms of commerce and work. Our results establish that as progress in the underlying

digital technologies reduces the marginal cost of platform scope, these social objectives can often

be achieved without resorting to regulatory intervention.

8.4. Non exclusive choice and technology cycles

The analysis of Section 7 suggests an interesting trajectory of consumption that accompanies the

steady increase in platform scope driven by progress in the underlying digital technologies. For a

sufficiently wide span of functionality requirements, consumers initially purchase multiple products

to satisfy their needs, since each product offers low scope. As platform scope increases, firms increase

prices and consumers shift to buying a single general-purpose product, as expected. However, at

very high levels of scope, consumers may switch to buying multiple products again. The first

instance of non-exclusive purchases is driven by the inability of a single product to fulfill the

entire span of consumer functionality requirements satisfactorily. At the high end of scope, while

each product is very effective at satisfying a consumer’s entire span of desired functionalities,

consumers still purchase multiple products, and employ these general-purpose products as if they

were specialized.

If one examines the Windows-Mac market, there are indications that the prices have dropped

to the point where something resembling a non-exclusive equilibrium is emerging. Dedicated Mac

users have often bought PC’s for their ‘office’ needs. Currently, more dedicated Windows users

are buying Macs for specific functionality needs — DVD viewing, digital photography, and video
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editing being common examples. Both products are powerful, general-purpose machines, capable of

fulfilling all the functionality requirements described above. Clearly, these multi-product purchases

are being driven by incremental value.

The trajectory we have described may in fact be cyclical. As the power of any generation of

technology-based products increases, and consumers get used to the level of performance provided

by the general-purpose products they are using as specialized devices, they may ‘revise’ their

partial-equilibrium utility functions to ones that expect a higher level of effectiveness. This could

result in firms’ platform scope choices as being perceived as specialized again, after which when

the next generation of technology emerges, the cycle repeats. Incorporating this kind of effect into

a formal model remains work in progress. We have also made some progress on a more precise

representation of how intra-industry competition may dictate platform scope choices. We hope to

complete this work in the near future.
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A. Appendix: Proofs

Proof of Lemma 1

Define

U1(y, t) = r − t
·
G(
1 + r

2
− y) +G(y − 1− r

2
)

¸
,

U2(y, t) = r − t
·
G(y − 1− r

2
)−G(y − 1 + r

2
)

¸
, (A.1)

U3(y, t) = r − t
·
2G(

1

2
)−G(y − 1 + r

2
)−G(1− (y − 1− r

2
))

¸
.

This implies that

U(y, t) =

U1(y, t) for 12 ≤ y ≤ 1+r
2 ;

U2(y, t) for r2 ≤ y ≤ 2−r
2 ;

U2(y, t) for 2−r2 ≤ y ≤ 1
(A.2)

(a) It is easily verified that

U1(1+r2 , t) = U
2(1+r2 , t) = r − tG(r), (A.3)

and that

U2(2−r2 , t) = U
3(2−r2 , t) = r − t[G(12)−G(12 − r)], (A.4)

which establishes that U(y, t) is continuous in its arguments. Also, differentiating both sides of

equation (A.1) with respect to y yields:

U11 (y, t) = −t
·
g(y − 1− r

2
)− g(1 + r

2
− y)

¸
,

U21 (y, t) = −t
·
g(y − 1− r

2
)− g(y − 1 + r

2
)

¸
, (A.5)

U31 (y, t) = −t
·
g(1− (y − 1− r

2
))− g(y − 1 + r

2
)

¸
,

and with respect to t yields:

U12 (y, t) = −
·
G(
1 + r

2
− y) +G(y − 1− r

2
)

¸
,

U22 (y, t) = −
·
G(y − 1− r

2
)−G(y − 1 + r

2
)

¸
, (A.6)

U32 (y, t) = −
·
2G(

1

2
)−G(y − 1 + r

2
)−G(1− (y − 1− r

2
))

¸
.

Since both G(x) and g(x) > 0, and noting from equation (A.2) the ranges of y in which each

function is active, this establishes that U is decreasing in y and in t

(b) Using equation (A.5), it is easily verified that

U11 (
1+r
2 , t) = U

2
1 (
1+r
2 , t) = −tg(r), (A.7)
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and that

U21 (
2−r
2 , t) = U

3
1 (
2−r
2 , t) = −t[g(12)− g(12 − r)]. (A.8)

This establishes that U1(y, t) is continuous. Inspection of (A.5) establishes that it is piece-wise

differentiable with respect to both its arguments.

(c) Differentiating both sides of equation (A.5) with respect to y yields:

U111(y, t) = −t
·
g1(y − 1− r

2
) + g1(

1 + r

2
− y)

¸
, (A.9)

U211(y, t) = −t
·
g1(y − 1− r

2
)− g1(y − 1 + r

2
)

¸
, (A.10)

U311(y, t) = t

·
g1(1− (y − 1− r

2
)) + g1(y − 1 + r

2
)

¸
. (A.11)

Since g(x) is strictly increasing, g1(x) > 0, which, in conjuction with equations (A.9) and (A.11),

establishes that U111(y, t) < 0 and that U
3
11(y, t) > 0. Finally, if g11(x) > 0, then

g1(y − 1− r
2
) > g1(y − 1 + r

2
), (A.12)

which along with equations (A.10) implies that U211(y, t) < 0. Conversely, if g11(x) < 0, then

g1(y − 1− r
2
) < g1(y − 1 + r

2
), (A.13)

and equations (A.12) and (A.13) imply that U211(y, t) > 0.

(d) Differentiating both sides of equation (A.6) with respect to y yields:

U112(y, t) = −
·
g(y − 1− r

2
)− g(1 + r

2
− y)

¸
,

U212(y, t) = −
·
g(y − 1− r

2
)− g(y − 1 + r

2
)

¸
, (A.14)

U312(y, t) = −
·
g(1− (y − 1− r

2
))− g(y − 1 + r

2
)

¸
.

Now, g(x) > 0, and noting from equation (A.2) the ranges of y in which each of the U functions

is active, this establishes that U2(y, t) is decreasing in y. This completes the proof.

Proof of Lemma 2

Recall that:

P (q, t) = U(q + 1
2 , t), (A.15)

and

π(q, t) = nq(P (q, t)− c). (A.16)

(a) Differentiating both sides of equation (A.15) with respect to q yields:

P1(q, t) = U1(q +
1
2 , t) (A.17)
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which in conjuction with equation (A.5) establishes that if r > 0:

P1(q, t) < 0 for 0 ≤ q ≤ 1−r
2 . (A.18)

Furthermore, differentiating both sides of equation (A.17) with respect to q yields:

P11(q, t) = U11(q +
1
2 , t). (A.19)

From Lemma 1(c), we know that if g(y) is linear, U11(y, t) ≤ 0 for all 12 ≤ y ≤ 2−r
2 , which implies

that:

P11(q, t) ≤ 0 for 0 ≤ q ≤ 1−r
2 . (A.20)

Now, differentiating both sides of equation (A.16) twice with respect to q yields

π11(q, t) = 2nP1(q, t) + nqP11(q, t) (A.21)

Equations (A.18), (A.20) and (A.21) establish that

π11(q, t) < 0 for 0 ≤ q ≤ 1−r
2 . (A.22)

(b) Recall that for 1−r2 ≤ y ≤ 1
2 :

π(q, t) = n(q(r − c)− tq(q(1− q)− (1− r)
2

4
), (A.23)

and therefore:

π(1−r2 , t) = n(
(r − c)(1− r)

2
− tr(1− r)

2

4
); (A.24)

π(12 , t) = n(
(r − c)
2

− tr(2− r)
8

). (A.25)

By direct comparison of the expressions on the RHS on equations (A.24) and (A.25), it can be

established that:

π(1−r2 , t) ≥ π(12 , t) for t ≥ t1, (A.26)

π(12 , t) ≥ π(1−r2 , t)for t ≤ t1. (A.27)

where

t1 =
4(r − c)
r(3− 2r) . (A.28)

Next, for q ≥ 1−r
2 , direct comparison of the expressions on the RHS on equations (A.23) and (A.24)

establishes that

π(1−r2 , t) ≥ π(q, t) for t ≥ t2, (A.29)

where

t2 =
2(r − c)

r(1− r + q) + q(1− 2q) . (A.30)

iii



Comparing the expressions on the RHS of (A.28) and (A.30) establishes that:

t2 ≤ t1 for q ≥ r
2
. (A.31)

Equations (A.26), (A.29) and (A.31) establish that

π(1−r2 , t) ≥ π(12 , t)⇒ π(1−r2 , t) ≥ π(q, t) for all q ≥ 1−r
2 .

Similarly, direct comparison of the expressions on the RHS on equations (A.23) and (A.25) estab-

lishes that

π(12 , t) ≥ π(q, t) for t ≥ t3, (A.32)

where

t3 =
4(r − c)

r(2− r) + 2q(1− 2q) . (A.33)

Comparing the expressions on the RHS of (A.28) and (A.33) establishes that:

t3 ≥ t1 for q ≥ 1− r
2
. (A.34)

Equations (A.27), (A.32) and (A.34) establish that

π(12 , t) ≥ π(1−r2 , t)⇒ π(12 , t) ≥ π(q, t) for all q ≥ 1−r
2 ,

which completes the proof.

Proof of Proposition 1

Recall that

π(q, t) =

nq(r − c)− ntq(q2 + r2

4 ) for 0 ≤ q ≤ r
2 ;

nq(r − c)− ntrq2 for r2 ≤ q ≤ 1−r
2 ;

nq(r − c)− ntq(q(1− q)− (1−r)2
4 ) for 1−r2 ≤ q ≤ 1

2 .

(A.35)

Lemma 2 has established that over the range q ∈ [0, 1−r2 ], the function π(q, t) is strictly concave

and has at most one interior maximum, and that over the range q ∈ [1−r2 , 12 ], it is maximized at one
of its end-points. Since 1−r

2 is contained in [0, 1−r2 ], to find the global maximum of π(q, t), all one

needs to do is to compare the value of the maximum of π(q, t) over q ∈ [0, 1−r2 ] with the end-point
value π(12 , t).

The interior maximum in q ∈ [0, 1−r2 ] could occur in either [0, r2 ], or in [ r2 , 1−r2 ] — the functional
form of π(q, t) is different in each of these intervals. There are therefore three candidate maxima.

(1) Interior maximum in [0, r2 ]: this value q
∗
a solves π1(q

∗
a, t) = 0, which, based on (A.35), reduces

to:

q∗a =

s
r − c− r2t

4

3t
, (A.36)

and is relevant only if q∗a ≤ r
2 . Using (A.36), this condition simplifies to:

t ≥ r − c
r2

. (A.37)
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(2) Interior maximum in [ r2 ,
1−r
2 ]: this value q

∗
b solves π1(q

∗
b , t) = 0, which, based on (A.35),

solves to:

q∗b =
r − c
2rt

, (A.38)

and is relevant only if r2 ≤ q∗b ≤ 1−r
2 . Using (A.38), this simplifies to:

r − c
r2
≥ t ≥ r − c

r(1− r) . (A.39)

(3) End-point maximum at 12 : This is relevant only if π(
1
2 , t) ≥ π(1−r2 , t), which we know from

(A.28) occurs only when

t ≤ 4(r − c)
r(3− 2r) . (A.40)

Now, for r ≤ 1
2 , it is easily verified that

4(r−c)
r(3−2r) ≤ r−c

r2
. In conjunction with (A.39) and (A.40),

(A.37) establishes that q∗a is the global maximizing value for t ≥ r−c
r2
.

Comparing π(12 , t) to π(q
∗
b , t) yields:

π(
1

2
, t) ≥ π(q∗b , t) if t ≤

2(r − c)
r(2−√2r) . (A.41)

Again, it is straightforward to verify that 2(r−c)
r(2−√2r) ≤

4(r−c)
r(3−2r) for all r ≤ 1. Therefore, π(12 , t) ≥

π(q∗b , t) only in the region where π(
1
2 , t) ≥ π(1−r2 , t). Finally, for r ≤ 1

2 :

r − c
r2
≥ 2(r − c)
r(2−√2r) ≥

r − c
r(1− r) . (A.42)

Therefore, q∗b is the global maximizer for
r−c
r2 ≥ t ≥ 2(r−c)

r(2−√2r) , after which π(q, t) is maximized at

its end-point 12 . Substituting these q values into the inverse demand function and into the profit

function completes the proof.

Proof of Proposition 2

The slope of the gross total surplus function sM(q∗(t), t) with respect to t, can be computed to
be:

−n(3r−1)24 for 0 ≤ t ≤ 2(r−c)
r(2−√2r)

sM2 (q
∗(t), t) = −n(r4t2+9(r−c)2)

24rt2
for 2(r−c)

r(2−√2r) ≤ t ≤
(r−c)
r2

−n(2(r−c)+r2t)9t

q
4(r−c)−r2t

3t for (r−c)
r2
≤ t ≤ 2

(A.43)

Similarly, the slope of the gross profit function with respect to t, can be shown to be:

−nr(2−r)8 for 0 ≤ t ≤ 2(r−c)
r(2−√2r)

π2(q
∗(t), t) = −n(r−c)2

4rt2
for 2(r−c)

r(2−√2r) ≤ t ≤
(r−c)
r2

−n(7(r−c)2+(r(rt−1)+c)2)
12
√
3t2

q
t

4(r−c)−r2t for
(r−c)
r2
≤ t ≤ 2

(A.44)
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Using r < 1
2 , 0 ≤ t ≤ 2 and c ≤ P (12 , t) establishes the following:

π2(q
∗(t), t) < sM2 (

1

2
, t) for 0 ≤ t ≤ 2(r − c)

r(2−√2r) (A.45)

π2(q
∗(t), t) > sM2 (

1

2
, t) for

2(r − c)
r(2−√2r) ≤ t ≤

(r − c)
r2

(A.46)

π2(q
∗(t), t) > sM2 (

1

2
, t) for

(r − c)
r2

≤ t ≤ 2 (A.47)

Note from Proposition 1 that for 0 ≤ t ≤ 2(r−c)
r(2−√2r) , full market coverage is optimal and hence the

corresponding optimal level of product scope will be t∗f . For
2(r−c)
r(2−√2r) ≤ t ≤ 2, partial market

coverage is optimal and hence the optimal level of scope is given by t∗p.

Now, the socially optimal level t∗ satisfies:

sM2 (q
∗(t), t) = F1(t). (A.48)

while the profit-maximizing levels t∗f , t
∗
p satisfy

π2(q
∗(t), t) = F1(t). (A.49)

Since F1(t) is strictly increasing (because F is strictly convex), (A.45) — (A.49) imply that t
∗
f < t

∗

and t∗p > t∗, thus establishing the result.

Proof of Lemma 3

Define:

RM(q, t) = q(PM(q, t)− c), (A.50)

and

RC(qi, ti, tj, pj) = qi(P
C(qi, ti, tj , pj)− c). (A.51)

The function πi(qi, ti, tj , pj), i = A,B, therefore takes either the form RM(qi, ti) or the form

RC(qi, ti, tj, pj). The former is simply the monopoly profit function, which has already been shown

to have at most one interior maximum, and from (7) the latter can be expanded to:

RC(qi, ti, tj , pj) = R
M(qi, ti)− [qi(U(1− qi, tj)− pj)]. (A.52)

Since −U1(1− qi, tj) > 0, the function [qi(U(1− qi, tj)− pj)] is increasing and convex in qi for all
qi. Therefore, the function R

C(qi, ti, tj , pj) also has no more than one interior maximum, and it is

also strictly concave for qi ≤ 1−r
2 .

Now, suppose πi(qi, ti, tj , pj) has an interior maximum q
∗ in its monopoly region, implying that

RM1 (q
∗, ti) = 0. Based on (A.52),

RC1 (qi, ti, tj, pj) = R
M
1 (qi, ti)− [U(1− qi, tj)− pj] + qiU1(1− qi, tj). (A.53)

Since RM1 (qi, ti) < 0 for qi > q
∗, and U1(1− qi, tj) < 0 for all qi, and by definition, U(1− qi, tj)− pj

> 0 for any qi in the competitive region of the duopolist’s profit function, the RHS of (A.53) is

strictly negative, and hence if there is an interior maximum in the monopoly region, there cannot
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be one in the competitive region.

Similarly, if πi(qi, ti, tj , pj) has an interior maximum q∗ in its competitive region, based on
(A.53) this means that

πM1 (q
∗, ti) = [U(1− q∗, tj)− pj]− q∗U1(1− q∗, tj) > 0, (A.54)

which means that πM1 (qi, ti) > 0 for any qi < q
∗, which in turn implies that πi(qi, ti, tj , pj) cannot

have an interior maximum in its monopoly region. The result follows.

Proof of Proposition 3

Let the demand for firm A and firm B under a candidate pure strategy Nash equilibrium be

nq∗A and nq
∗
B respectively. Let the corresponding prices be p∗A and p

∗
B. We continue to use the

functions defined in (A.50) and (A.51).

(a) Under a local monopoly equilibrium configuration, we know that qA+ qB <
1
2 . In a feasible

Nash equilibrium, q∗i has to be a local maximizer of π
i(qi, ti, tj , pj). Since q

∗
i is in the monopoly

region of πi(qi, ti, tj , pj), and we know that the unique local maximizer in this region, if it exists,

is QM(ti),the only possible value of q∗i is QM(ti). Consequently, the local monopoly equilibrium

configuration is feasible only if QM(tA) +Q
M(tB) <

1
2 .

(b) Under a kinked equilibrium configuration, we know that q∗A+ q∗B = 1
2 , and that q

∗
i is at

the kink of the duopoly inverse demand curve of firm i. Given firm j’s strategy, there should be

no incentive for firm i to deviate from its choice of qi. Locally, that means that in any kinked

equilibrium, either a small decrease or a small increase should not increase firm i’s payoff, or that

RM1 (q
∗
i , ti) ≥ 0, (A.55)

and that

RC1 (q
∗
i , ti, tj , p

∗
j) ≤ 0. (A.56)

Since RM1 (q, ti) < 0 for q > Q
M(ti), it follows from (A.55) that

q∗i ≤ QM(ti), i = A,B. (A.57)

Define qK(pj) as the value of q at the kink in the inverse demand function, for any opponent

price pj . From this definition of qK(pj), we know that

U(1− qK(pj), tj) = pj. (A.58)

Differentiating both sides of (A.58) with respect to pj and rearranging yields:

qK1 (pj) =
1

−U1(1− qK(pj), tj) > 0. (A.59)

Substituting in the expression for RM1 (qi, ti) into (A.53) yields:

RC1 (qi, ti, tj , pj) = [U(qi, ti)− c− U(1− qi, tj) + pj ] + qi[U1(qi, ti) + U1(1− qi, tj)]. (A.60)

Also define sK(pj) as the value of R
C
1 (qi, ti, tj , pj), evaluated at the kink q

K(pj) , as a function of
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opponent price pj . (A.58) and (A.60) yield:

sK(pj) = [U(q
K(pj), ti)− c] + qK(pj)[U1(qK(pj), ti) + U1(1− qK(pj), tj)]. (A.61)

Differentiating both sides of (A.61) with respect to pj yields:

sK1 (pj) = qK1 (pj)[2U1(q
K(pj), t) + U1(1− qK(pj), tj)] (A.62)

+qK(pj)[U11(q
K(pj), ti)− U11(1− qK(pj), tj)].

From (A.59), we know that qK1 (pj) > 0. Since U1(q, t) < 0 for all q, and based on Lemma 1,

U11(q
K(pj), ti) < 0, and U11(1− qK(pj), tj) > 0 so long as qK(pj) ≤ 1−r

2 , it follows that

sK1 (pj) < 0. (A.63)

In other words, the slope of the competitive profit function, evaluated at the kink, is decreasing in

pj.

Now, by the definition of qK and of QC(ti, tj),

qK(U(1−QC(ti, tj), tj)) = QC(ti, tj), (A.64)

and

RC1 (Q
C(ti, tj), ti, tj, U(1−QC(ti, tj), tj)) = 0, (A.65)

which in conjunction with (A.56) and the fact that sK1 (pj) < 0, establishes that

U(1−QC(ti, tj), tj) ≤ p∗j (A.66)

(A.59), (A.64) and (A.66) together imply that

QC(ti, tj) ≤ qK(p∗j ). (A.67)

Since the candidate equilibrium is at the kink, it follows that q∗i = qK(p∗j ). Therefore,

QC(tA, tB) +Q
C(tB, tA) ≤ q∗A + q∗B, (A.68)

and the result follows.

(c) If the candidate equilibrium is in the competitive region, it follows that the corresponding

q values occur after the kink, or that

q∗i ≥ qK(p∗j). (A.69)

Also, since q∗i is part of a candidate equilibrium in this region, it must be the case that it occurs

at a local maximum of RC(qi, ti, tj, p∗j), or that:

RC1 (q
∗
i , ti, tj , p

∗
j) = 0, (A.70)

which in conjunction with (A.69) implies that

RC1 (q
K(p∗j ), ti, tj, p

∗
j ) ≥ 0. (A.71)
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Based on (A.63) and the definition of QC(ti, tj), (A.71) implies that

qK(p∗j) ≥ QC(ti, tj). (A.72)

From (A.72), it follows that

QC(tA, tB) +Q
C(tB, tA) ≥ q∗A + q∗B. (A.73)

Since q∗A + q
∗
B =

1
2 , the result follows.

Proof of Proposition 4

Based on Proposition 3(a), a necessary condition for a local monopoly equilibrium to exist is

that

2QM(t) ≤ 1
2
. (A.74)

Based on the bounds on QM(t) in Table 4.1, it is easily seen that when r ≤ 1
2 , this is always true

in the region 2 ≥ t ≥ r−c
r2 . Also, based on the derived values of Q

M(t) in Table 4.1, this condition

holds in r−c
r2
≥ t ≥ r−c

r(1−r) so long as

2

µ
r − c
2rt

¶
≤ 1
2
, (A.75)

which reduces to

t ≥ 2(r − c)
r

. (A.76)

Therefore, a local monopoly equilibrium exists if 2 ≥ t ≥ 2(r−c)
r . Substituting in the appropriate

values of q and prices from Tables 3 and 4, and computing the corresponding profits completes the

proof.

Proof of Proposition 5

Based on Proposition 3(b), necessary conditions for a kinked equilibrium to exist are

2QM(t) ≥ 1
2
, (A.77)

and

2QC(t, t) ≤ 1
2
. (A.78)

Following the proof of Proposition 4, (A.77) reduces to:

t ≤ 2(r − c)
r

. (A.79)

For (A.78) to be true, it must be the case that QC(t, t) < 1−r
2 . Therefore, it can easily be seen that

for symmetric t, given (A.79), and the fact that r ≤ 1
2 , the relevant range of values is the set in the

second row, corresponding to

QC(ti, tj) =
r − c

r(2ti + tj)
(A.80)
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Substituting (A.80) into (A.78) for symmetric t and rearranging yields:

4

µ
r − c
3rt

¶
≤ t. (A.81)

(A.79) and (A.81) establish that the range of values in which kinked equilibria exist is2(r−c)r ≥ t ≥
4(r−c)
3rt . For q

∗
A = q

∗
B =

1
4 , substituting into the price function from Tables 3 and 4, and computing

profits at this value completes the proof.

Proof of Proposition 6

Based on Proposition 3(c), the necessary condition for a kinked equilibrium to exist is that:

2QC(t, t) >
1

2
, (A.82)

which we know from (A.81) is true if:

4

µ
r − c
3rt

¶
> t (A.83)

for QC(t, t) < 1−r
2 , and is always true if Q

C(t, t) ≥ 1−r
2 , since r ≤ 1

2 . Substituting in the relevant

q and price values from Tables 3 and 4, for symmetric t, and computing profits at these values

completes the proof.

Proof of Lemma 4

The proof uses the following properties of the functions RM(q, t) and RC(q, ti, tj , pj) defined in

(A.50) and (A.51):

RM2 (q, t) = qU2(q +
1

2
, t) < 0; (A.84)

RM12(q, t) = qU12(q +
1

2
, t) + U2(q +

1

2
, t) < 0; (A.85)

RC2 (q, ti, tj, pj) = qU2(q +
1

2
, ti) < 0, and (A.86)

RC12(q, ti, tj, pj) = qU12(q +
1

2
, ti) + U2(q +

1

2
, ti) < 0. (A.87)

(a) The form of the profit function for local monopoly equilibria is the same as the one given by

equation (6). A straightforward application of the envelope theorem yields

d

dti
πi(q∗i (ti, tj), ti, tj, P

∗
j (tj , ti)) = R

M
2 (q

∗
i (ti, tj), ti) < 0.

Note that an application of the envelope theorem is valid here as the equilibrium values are local

maxima in qi — moreover, q
∗
i is a function of ti alone, and P

∗
j (tj, ti) is independent of ti.

(b) The argument is based on analyzing the impact of a small increase in ti, to ti + ε. To ease

exposition, let (q∗A, q
∗
B) be the equilibrium q pair under the original value of ti.

If the pair (q∗A, q
∗
B) continues to be a feasible kinked equilibrium pair after ti increases to ti+ ε,

we assume that the firms stay at this q pair. In a kinked equilibrium, firms still price on their own

x



monopoly inverse demand functions, and hence a change in the value of ti while holding tj constant

does not change pj. Therefore, firm i’s new profits are RM(q∗i , ti + ε), which based on (A.84) is

strictly less than RM(q∗i , ti).

If the pair (q∗A, q
∗
B) is no longer a feasible kinked equilibrium, we assume that the firms move to

the closest pair (qεA, q
ε
B). The proof then consists of the following steps:

(i) qεi < q
∗
i : Assume the converse, i.e., that q

ε
i > q

∗
i . Since q

∗
i is part of a kinked equilibrium at

the original scope value ti, we know that:

RM1 (q
∗
i , ti) ≥ 0. (A.88)

and

RC1 (q
∗
i , ti, tj, pj) ≤ 0. (A.89)

Similarly, since qεi is part of a kinked equilibrium at the new scope value ti + ε, we know that:

RM1 (q
ε
i , ti + ε) ≥ 0. (A.90)

and

RC1 (q
ε
i , ti + ε, tj , pj) ≤ 0. (A.91)

(A.85) and (A.90) imply that if qεi > q
∗
i :

RM1 (q
∗
i , ti + ε) > 0. (A.92)

Since q∗i is not a kinked equilibrium for ti + ε, (A.92) must mean that

RC1 (q
∗
i , ti + ε, tj, pj) > 0, (A.93)

which in conjuction with (A.89) contradicts (A.87). Therefore, we have established that in any

new candidate q pair,

qεi < q
∗
i . (A.94)

(ii) Profits reduce: Given (A.90) and (A.92), (A.94) implies that:

RM(q∗i , ti + ε) > RM(qεi , ti + ε). (A.95)

Also, at the fixed level of quantity q∗i , (A.85) implies that

RM(q∗i , ti) > R
M(q∗i , ti + ε), (A.96)

since the increase in ti only reduces firm i’s own price, without changing firm j’s price or quantity.

(A.95) and (A.96) imply that:

RM(q∗i , ti) > R
M(qεi , ti + ε), (A.97)

which establishes that even when a small increase in ti necessitates a change in the equilibrium

q values, it still reduces profits. As a consequence, we can now conclude that for any kinked

equilibrium,
d

dti
πi(q∗i (ti, tj), ti, tj , P

∗
j (tj, ti)) < 0. (A.98)
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(c) The simplicity of the price and q values makes direct computation of the equilibrium profit

function and its total derivative straightforward in this case. Substituting in these values from

Tables 3 and 4 , we get:

πi(q∗i (ti, tj), ti, tj , P
∗
j (tj, ti)) =

nr(ti + 2tj)2

36(ti + tj)
. (A.99)

Differentiating both sides with respect to ti yields:

d

dti
πi(q∗i (ti, tj), ti, tj , P

∗
j (tj, ti)) =

nrti(ti + 2tj)

36(ti + tj)2
> 0, (A.100)

which establishes the result.

Proof of Proposition 7

According to Lemma 4, at any first-stage candidate pair (tA, tB), under local monopoly and

kinked equilibrium configurations, firms have an incentive to change their choice of ti if it leaves

them in the same equilibrium configuration. At the set of (tA, tB) pairs which border the local

monopoly and kinked regions in the (tA, tB) space, the payoff functions are continuous and decreas-

ing in ti even at the point of transition. Therefore, these cannot be supported in an equilibrium.

However, at the set of feasible (tA, tB) pairs which border the kinked and competitive regions

in the (tA, tB) space, an increase in ti takes the firm into the kinked region and strictly reduces

payoff, according to Lemma 4(b). Likewise, a decrease in ti takes the firm into the competitive

region and strictly reduces payoff, according to Lemma 4(c). As a consequence, for this set of pairs

at which a second stage pure strategy price equilibrium exists, given firm j’s choice of tj , firm i

has an incentive not to deviate from its choice ti. This ensures that any pair (tA, tB) along the

CK border for which a pure-strategy second stage equilibrium exists is part of a subgame perfect

equilibrium, and proves part (b).

Note that for symmetric values of scope, a pure strategy price equilibrium always exists in the

second stage. Thus, the symmetric value of t that forms the point of transition between the kinked

and competitive equilibrium regions is at:

3(tA + tB)

(2tA + tB)(tA + 2tB)
=

r

2(r − c) , (A.101)

and substituting tA = tB = t, we have t = 4
3(
r−c
r ). From Table 4.3, any kinked equilibrium for

values of product scope tA = tB =
4
3(
r−c
r ) has to satisfy:

r − c
3rt

≤ q∗i ≤
1

2
− r − c
3rt

(A.102)

Substituting the value of t reduces this to 1
4 ≤ q∗i ≤ 1

2 − 1
4 for i = A,B, or q

∗
A = q

∗
B =

1
4 . Since firms

price in the monopoly region of their demand curves,

p∗A = p
∗
B = P

M(
1

4
,
4

3
(
r − c
r
)) =

c+ 2r

3
(A.103)
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Substituting the values of t and q∗i into the payoff functions yields the following gross profits:

π∗A = π∗B =
1

6
(r − c), (A.104)

which completes the proof.

Proof of Proposition 8

The slope of the gross total surplus curve sD(q, t), evaluated at the duopolists’ optimal quantity,

is:
−nr(3+4r2)48 for 4(r−c)3r ≤ t ≤ 2(r−c)

r

sD2 (q
∗(t), t) = −n( r312 + 3(r−c)2

4rt2
) for 2(r−c)r ≤ t ≤ r−c

r2

−2n(2(r−c)+r2t)9t

q
4(r−c)−r2t

3t for r−c
r2
≤ t ≤ 2.

(A.105)

Correspondingly, the slope of the gross profit function is:

−nr16 for 4(r−c)3r ≤ t ≤ 2(r−c)
r

π2(q
∗(t), t) == −n(r−c)2

4rt2
) for 2(r−c)r ≤ t ≤ r−c

r2

−n(2(r−c)+r2t)12t

q
4(r−c)−r2t

3t for r−c
r2
≤ t ≤ 2

(A.106)

The socially optimal level t∗ satisfies:

t∗ = argmax
t
sD(q∗(t), t)− 2F (t), (A.107)

which reduces to:

F1(t
∗) =

sD2 (q
∗(t∗), t∗)
2

, (A.108)

and the duopolists’ optimal level t∗d satisfies:

F1(t
∗
d) = π2(q

∗(t∗d), t
∗
d). (A.109)

Straightforward algebraic manipulation establishes the following:

π2(q
∗(t), t) <

sD2 (q
∗(t), t)
2

for
4(r − c)
3r

≤ t ≤ 2(r − c)
r

; (A.110)

π2(q
∗(t), t) >

sD2 (q
∗(t), t)
2

for
2(r − c)
r

≤ t ≤ r − c
r2

, and (A.111)

π2(q
∗(t), t) >

sD2 (q
∗(t), t)
2

for
r − c
r2
≤ t ≤ 2. (A.112)

Since F1(t) is strictly increasing, conditions (A.108) — (A.112) establish that:

If
4(r − c)
3r

≤ t∗d ≤
2(r − c)
r

, then t∗ > t∗d,

and that:

If
2(r − c)
r

≤ t∗d ≤ 2, then t∗d > t∗,
which completes the proof.
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B. Appendix B

Note the following about the bounds on QM(ti) and Q
C(ti, tj) in Tables 1 and 2. Since r ≤ 1

2 ,

2(
r

2
) ≤ 1

2
and 2(

1− r
2
) ≥ 1

2
. (B.1)

From proposition 3, a local monopoly equilibrium is feasible only if

QM(tA) +Q
M(tB) <

1

2
. (B.2)

From column 3 in Table 4.1 and (B.1), it is clear that condition (B.2) is always satisfied for

2 ≥ tA, tB ≥ r−c
r2

and never satisfied for r−c
r(1−r) ≥ tA, tB . In the region r−c

r2
≥ tA, tB ≥ r−c

r(1−r) ,
condition (B.2) is satisfied iff

r − c
2rtA

+
r − c
2rtB

<
1

2
or
tA + tB
tAtB

<
r

r − c. (B.3)

If 2 ≥ ti ≥ r−c
r2
, r−c
r(1−r) ≥ tj ≥ 12(r−c)

4−3(1−r)2 for i, j = A,B, from column 2 in Table 4.1, we need the
following for (B.2) to be satisfied:s

4(r − c)− r2ti
12ti

+
1

3
−
s
4− 3(1− r)2

36
− r − c

3tj
<
1

2
, (B.4)

which simplifies to: s
4(r − c)− r2ti

12ti
−
s
4− 3(1− r)2

36
− r − c

3tj
<
1

6
. (B.5)

The conditions (B.3) and (B.5) are each tighter than the other in their respective regions of the

(tA, tB) parameter space and hence a conjunction of the two conditions defines the MK curve that

partitions the local monopoly region and the kinked region.

Now consider the condition:

QC(tA, tB) +Q
C(tB, tA) ≤ 1

2
(B.6)

From column 3 of Table 4.2 and (B.1), it is clear that condition (B.6) will never be satisfied if

2ti + tj ≤ (r−c)
r(1−r) i, j = A,B. From columns 1 and 2, if 2(r−c

r2
− ti) ≥ tj ≥ 2( r−c

r(1−r) − ti), i, j = A,B,
then condition (B.6) will only be satisfied if

r − c
r(2tA + tB)

+
r − c

r(2tB + tA)
≤ 1
2
or

3(tA + tB)

(2tA + tB)(tA + 2tB)
≤ r

2(r − c) (B.7)

Once again from columns 1 and 2 of Table 4.2, if for i, j = A,B, tj ≥ 2( r−cr2 − ti) and 2( r−c
r(1−r) −

ti) ≥ tj ≥ (A− 2ti +
p
A(A− ti)) where A = 4(r − c) + ti(1− r)2, then condition (B.6) will only
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be satisfied ifs
4(r − c)− r2ti
4(3ti + 2tj)

+
2tj + ti −

p
(2tj + ti)2 − (4(r − c) + tj(1− r)2)(3tj + 2ti)

2(3tj + 2ti)
≤ 1
2

(B.8)

It can be verified that each of conditions (B.7) and (B.8) have to be binding in their respective

regions of the parameter space for condition (B.6) to be satisfied. Therefore a simple conjunction

of conditions (B.7) and (B.8) yields the KC curve that separates the kinked equilibrium region

from the competitive equilibrium region. It is straightforward to verify that every point (tA, tB)

which satisfies ti ∈ [0, 2], i = A,B, and satisfies (B.3) and (B.5), also satisfies condition (B.7) and
(B.8). Thus, the region between theMK and the KC curves corresponds to the kinked equilibrium

region.
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