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1. Bounded rationality and organizations

Although models with bounded rationality—defined broadly to mean those in which
agent behavior departs from the paradigm of effortless full rationality—are appearing
in every field of economics, only in the theory of organizations has bounded rationality
been an important theme throughout the history of the field. There is a reason for
this difference. The classical model of rational choice has been a good approximation
and powerful tool in studying consumer and producer theory, markets and price de-
termination, imperfect competition, trading in financial markets, and most other topics
in economics. Only recently have fields matured enough that some outstanding open
questions require more accurate models of human decision making. In the theory of
organizations, on the other hand, the rational model leads to uninteresting models of
organizations, in which one manager or entrepreneur can run a firm or economy of
arbitrary size. Without bounds on information processing capacity, it is impossible to
explain the sharing of information processing tasks that is such an important part of the
interaction between members of organizations, and to explain the existence and function-
ing of the administrative apparatus that are such important components of organizations
(as documented, for example, by Chandler (1966, 1990)).

The purpose of this article is to give a broad and historical overview of the economic
theory of such joint or decentralized information processing in organizations. This topic
is inherently interdisciplinary, with contributions not only by economists but also by
researchers in management and information systems, computer science and operations
research. However, this already broad survey focuses primarily on the treatment of this
topic by economists.

Section 2 covers two methodological issues. Section 3 reviews early debates on the
computational efficiency of planning bureaus versus markets and of firms versus markets,
in which the theme of decentralization of information processing was important. Section
4 examines decompositions of decision problems. Formal modeling of information
processing constraints is taken up in Section 5, which reviews models that emphasize
communication constraints, and in Section 6, which reviews models that emphasize
computation constraints. Section 7 concludes by describing a few directions for future
research. An appendix mentions some related research in other fields.

2. Two methodological issues

2.1. Information processing constraints and constrained optimality

Most of the literature on information processing in organizations has adopted what I call
the constrained-optimal approach to modeling bounded rationality.

This means, most importantly, that the modeler explicitly incorporates information
processing constraints or costs into a computation, communication or decision problem.
A decision procedure then specifies not only a decision rule but also the communication
or computation procedure by which the decision rule is computed. The second defining
is that the modeler characterizes the feasible decision procedures that are optimal—or
that at least are good by some criterion, if it is too difficult to characterize optimal
procedures—according to a performance criterion that may reflect computation or com-
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munication costs.
Another common approach to modeling bounded rationality is to characterize se-

lected non-optimal decision rules in a model without explicit information processing
constraints. The non-optimal decision rules are informally motivated by complexity
considerations. This approach has been used most extensively in the non-rational learn-
ing literature. It is not always clear which non-optimal decision rules are the most
relevant, but this literature has many results on the asymptotic properties of non-optimal
learning rules or evolutionary mechanisms that are robust with respect to changes in the
specification of the rules or mechanisms.

These approaches are not pure substitutes. It is possible to define a set of feasi-
ble decision procedures that incorporates information processing constraints, and then
characterize selected non-optimal procedures in order to incorporate further unmodeled
bounds on rationality. For example, one can construct learning or evolutionary models
in which the constraints on the daily processing of information are modeled explicitly
and the properties of non-optimal learning rules or evolutionary mechanisms that adjust
the decision procedures are studied. An example of this in game theory is Binmore
and Samuelson (1992), and two examples in the theory of information processing in
organizations are Jordan (1995) and Miller (1996).

However, there are reasons for instead characterizing constrained-optimal procedures
when the model incorporates information processing constraints:

1. If the goal is organization design, then constrained-optimality is the appropriate
objective.

2. Economic theory is not meant simply to provide accurate predictions, but also to
isolate and elucidate the relationships between phenomena. A characterization of
constrained-optimal decision procedures isolates the effects of the modeled infor-
mation processing constraints, which can restrict the set of feasible decision rules
in interesting and complex ways.

3. Constrained-optimality can be a good approximation in a descriptive theory, at
least compared to picking arbitrary suboptimal procedures. This does not presume
that the agents whose bounded rationality is modeled, such as the information
processing agents in an organization, can effortlessly choose constrained-optimal
decision procedures. Instead, it presumes that the selection of the alternatives or the
design of organizations takes place on a time scale that is different from that of the
daily information processing tasks that are in the model. For example, the decision
procedures and organization structures observed in modern firms are the result of
many years of incremental learning, imitation and adaptation, and may become
quite good in environments that are stationary, even though the human hardware
on which these procedures run is slow enough that the daily cost of and delay in
implementing the procedures is significant.

2.2. Communication constraints and bounded rationality

The bounded rationality of economic agents means that there are limits on their ability to
communicate (i.e., to formulate and send messages and to read and interpret messages)
and to calculate with information in the brain. Both communication and computation
constraints appear implicitly or explicitly in the papers reviewed here.

There are also constraints on the physical transmission of messages, which I view
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as less significant than the human communication constraints. (E.g., compare the cost
of copying and mailing a research paper to 100 people with the cost of 100 people
reading the research paper.) These two types of constraints have quite different effects
on decision making procedures. There is no fundamental constraint on the bandwidth
(capacity) of information transmission to or from any one agent or on information
acquisition by any one agent. For example, if a principal needs to communicate with
n agents, he can establish n telephone lines or postal routes so that in one period he
can send a message to or receive a message from each of n agents, however large n
is. The capacity of a single person to read and write messages, on the other hand, is
fundamentally limited. If it takes the principal 1 period to read 1 message, then it takes
him n periods to read a message from each of n agents. Hence, whether 10 agents report
to one principal or 5 of the agents report to one principal and the other 5 report to a
second principal does not affect the information transmission costs, but does affect the
time it takes for all the messages to be read.

However, sometimes a model that is meant to reflect human communication costs,
but that allows individuals to compute any function of the information they have read, is
isomorphic to a model with unboundedly rational decision makers in which either it is
costly to acquire or to transmit information. Modeling bounded rationality in this way
still offers new insights, because it may suggest information acquisition or transmission
costs where normally there would be none. For example, an economist modeling costly
information acquisition without bounded rationality in mind would assume that, once
information is acquired by a firm, it is available or can be made available to all members
of the firm at no cost. When modeling bounded rationality, on the other hand, we might
instead assume that when information is acquired by or generated internally by a firm,
each member of the firm who uses this information must invest some time to do so.

3. Some early debates

3.1. Markets versus planning bureaus

The term organization is often interpreted as a tightly coordinated bureaucracy in which
individuals have specific functions and common purpose. However, more broadly an
organization is any collection of individuals or groups whose actions are coordinated
and for which there is some criterion for evaluating the collective outcome, even if it is
a weak criterion such as Pareto efficiency. Hence, markets and bureaucratic structures
such as firms are alternate forms of organizations. I shall use this broad definition
of organizations, and shall use the term bureaucracy to refer to tightly coordinated
organizations such as firms.

Having thus included market mechanisms in the theory of organization, I can say
that the first visible discussions in economics about alternate forms of organizations and
their relative efficiency for processing information were debates about socialism from
about 1910 to 1940.

Some early visions of planning under socialism held that economic activity would
be directed entirely by a central authority, without any role for prices. However, it
was later suggested that prices were necessarily part of efficient resource allocation
mechanisms, because they arise naturally in such a constrained optimization problem.
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This is essentially the argument of both Barone (1935, originally published in 1908)
and Mises (1951, originally published in 1922), although the former was proposing a
price-based planning mechanism and the latter was claiming that price-based planning
was not possible because of the lack of private ownership and exchange of the means of
production. (See Hayek (1935) for details on the origin of these ideas.)

This point was soon accepted by many economists, along with the additional point
that the computation of the solutions to the planning problem, even using prices, was
too large a task to be done centrally by a planning bureau and would require the
communication of too much information to the planning bureau. (Hayek (1940, pp.
125-126) summarizes this consensus). Therefore, later stages of the debate argued about
whether socialist economies could use competitive (decentralized) price mechanisms to
allocate resources. Taylor (1929), Lange (1936, 1937), and Dickinson (1939) and others
proposed iterative, decentralized price mechanisms in which the adjustment of prices
was controlled by the planning bureau. Hayek (1940) and others contended that such
mechanisms would be too cumbersome or slow, but these authors never presented a
model of how private property markets reach equilibrium, and hence the computational
efficiency of the proposed planning mechanisms and of markets in capitalist economies
could not be compared. This is an important gap that is yet to be filled.

3.2. Markets versus firms

In the 1930s, while some economists were comparing the efficiency of socialism and
private-property market economies, other economists, such as Kaldor (1934), Robinson
(1934), and Coase (1937), were drawing attention to the fact that even in private-property
market economies, many transactions take place inside firms and are not regulated by
price mechanisms. They suggested that the boundaries of firms are determined, in
part, by the relative efficiency of markets and bureaucracies for processing information.
However, this issue was also not resolved because the authors discussed the process of
managing a firm but did not make a direct comparison with how markets perform similar
tasks.

One of the themes of that brief literature, which has consistently reappeared in the
theory of organizations, is that information processing constraints may be a limit to
firm size. It was first observed that with centralized information processing, meaning
that a single entrepreneur processed all information and made all decisions, there would
be decreasing returns to scale because of the fixed information processing capacity of
firms. On the other hand, it was also noted that as firms grow, more managers are hired
and information processing is decentralized. Kaldor (1934, p. 68) responded that full
decentralization of the coordination task is still not possible:

You cannot increase the supply of co-ordinating ability available to an enterprise
alongside an increase in the supply of other factors, as it is the essence of co-
ordination that every single decision should be made on a comparison with all
the other decisions made or likely to be made; it must therefore pass through a
single brain.

This suggests that information processing constraints will lead not only to decentralized
information processing, but also to decentralized decision making, in which multiple
agents make decisions based on differing information.
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These themes have been further developed by Williamson (1975, 1985) and others in
the field of transaction economics, and in the formal models of information processing
described below.

4. Decomposition

The debates in the 1930’s on socialism and on the management of firms, reviewed in the
previous section, both observed that decentralizing information processing and decision
making economizes on communication costs and distributes the information processing
tasks. Such decentralization requires that decision problems be decomposed into tasks
that can be assigned to different agents. The decomposition can be into detailed steps
such as adding two numbers or transmitting one bit of data, but it then takes some
work to build up a model with recognizable patterns of information processing and
decision making. In contrast, it can be easy to interpret a less detailed decomposition of
a decision problem into recognizable subproblems. The study of such decompositions
was prevalent in the theory of organizations from the mid 1950’s to the early 1970’s,
aided by advances in mathematical optimization methods.

Consider the following classical decision problem. An organization has n units, and
its decision problem is

max
〈x1,y1,...,xn,yn〉⊂R2n

∑n
i=1 Πi(xi, yi)

subject to: ∑n
i=1 xi ≤ x .

(1)

For example, each unit is a division in a firm, 〈x1, . . . , xn〉 is an allocation of a quantity
x of a common resource such as capital, yi is a local decision variable for unit i, and Πi

is the profit function of unit i. The data in this decision problem are the profit functions
{Πi}n

i=1 and the total available resource x.
For i = 1, . . . , n, define fi : R → R2 by the following profit maximization problem

for unit i given a price or shadow price:

fi(p) = arg max
〈xi,yi〉∈R2

Πi(xi, yi) − pxi . (2)

Define f0 : Rn+1 → R by the following Walrasian price adjustment process:

f0(p, x1, . . . , xn) = p + α
(

∑n
i=1 xi − x

)
(3)

for some α > 0. Define a dynamic iterative process by selecting an initial shadow price
p0 ∈ R and setting, for t ≥ 0, 〈xt

i , yt
i〉 = fi(pt ) and pt+1 = f0(pt , xt

1, . . . , xt
n). Under

certain assumptions, 〈x∗1, y∗1, . . . , x∗n, y∗n〉 is a solution to (1) and p∗ is the associated
shadow price if and only if 〈p∗, x∗1, y∗1, . . . , x∗n, y∗n〉 is a steady state of the dynamic
process. Under additional assumptions, the process converges to a steady state. This
then defines an algorithm for calculating an approximate solution to (1), or an exact
solution if the process converges in finitely many steps.

This process is said to be a decomposition of (1), not because it is iterative and
makes use of shadow prices, but because the problem is divided into subproblems (the
maximization problem (2) defining fi and the formula (3) defining f0) that are smaller
than the original problem and that do not use all the data of the original problem, except
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through the indices that are communicated in each iteration and that coordinate the
subproblems.

The decomposition can be viewed as a decentralized decision procedure, as follows.
There is a resource manager who calculates f0 in each iteration. For each i = 1, . . . , n,
there is a unit manager who calculates fi. In each iteration, the resource manager com-
municates pt to the unit managers, and each unit manager i responds by communicating
xt to the resource manager. One advantage of such decentralization is that the computa-
tion tasks are shared among the n + 1 managers. If the unit managers are endogenously
endowed with the information about their profit functions, then another advantage of
this decentralized procedure is that these managers do not have to communicate their
entire profit functions to the resource manager or some central office.

Two pioneers of research on decomposed decision procedures were Kenneth Arrow
and Leonid Hurwicz, whose early work includes Arrow et al. (1958), Arrow and Hur-
wicz (1960), and Hurwicz (1960).1 Their motivation was twofold. One was to provide
foundations for economic planning, both economy-wide and within firms. Is it possible,
as proposed by Taylor (1929), Lange (1936, 1937), and Dickinson (1939), to establish
practical planning procedures that calculate the desired social outcome without having to
gather all information about the economy in a central office? The other motivation was
to provide foundations for competitive equilibrium in markets. As a static equilibrium
condition, competitive markets are informationally decentralized in that it is possible to
check whether a given allocation and prices are an equilibrium by inquiring about each
agent’s net demand for the prices, rather than having to learn each agent’s entire utility
or profit function. Can markets reach, i.e., calculate, the equilibrium with similar decen-
tralization, as suggested by Walras (1954) and Pareto (1927)? Arrow et al. (1958) and
Arrow and Hurwicz (1960) provided (qualified) affirmative answers to these questions
by devising decomposed iterative gradient methods for solving non-linear constrained
optimization, such as the one outlined above.

For linear programs, a decomposed algorithm was developed by Dantzig and Wolfe
(1960). Their motivation was practical. By breaking up a linear programming problem
into smaller subproblems, it became possible to solve large problems for which the sim-
plex method would exceed the memory capacity of computers. However, the application
of such decompositions to descriptive and normative models of human organizations was
immediately recognized as well. Dantzig and Wolfe (1960, p. 101) mention that their
decomposition method for linear programs, “besides holding promise for the efficient
computation of large-scale systems, …yields a certain rationale for the ‘decentralized
decision process’ in the theory of the firm.” Baumol and Fabian (1964) elaborated on
this interpretation of the Dantzig-Wolfe decomposition.

In subsequent research, the planning literature studied the design of decomposed
decision procedures for solving economy-wide planning problems. Heal (1973) is a
good exposition of this research; Chapter 3 provides a concise outline of the issues.
See Heal (1986) for a more recent survey. Furthermore, there is an enormous body of
research in operations research and management science on the design of decomposed
decision procedures for firms. This includes the literatures on multi-level systems (e.g.,
Dirickx and Jennergren (1979), Burton and Obel (1984), Van de Panne (1991), and Sethi
and Zhang (1994)), aggregation/disaggregation methods (see Rogers et al. (1991) for

1. See Arrow and Hurwicz (1977) for a collection of papers on the topic by these authors; the preface contains
interesting historical notes.
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a survey), and abstract systems theory (Mesarovic and Takahara (1989)). Some of the
research described in later sections of this survey is also based on decompositions of
decision problems.

5. Communication constraints

The decomposition of decision problems shows the possibility of decentralization, but
does not in itself quantify the benefits of doing so. For this, we need to model the cost of
or constraints on communication and information processing. In this section, I review
models of communication complexity, and in Section 6 I review models of computation
complexity.

5.1. Overview

The economics literature on communication complexity includes the Hurwicz iterative
procedures (message-space) literature, reviewed in Section 5.3, and team theory, re-
viewed in Section 5.4, both of which were initiated in the late 1950’s. Starting in the
1980’s, there has been some work on mechanism design that integrates communication
complexity and incentive constraints; this topic is treated in Section 5.5.

The study of communication complexity in computer science dates back to the
information theory of Shannon (1948). However, this paradigm considers only the
complexity of a one-way flow of information, rather than the interactive communication
that arises in economic models. Computer scientists started studying such interactive
communication complexity in the late 1970’s, with the seminal papers of Abselon (1980)
and Yao (1979). I will not review this literature in any detail, but I do draw on it the
following subsection when I give an overview of communication procedures and costs.
Kushilevitz and Nisan (1997) is a good introduction to the many tools and results that
have been developed.

Although computer science research on interactive communication complexity is
motivated by problems of communication in distributed computer networks and within
VLSI chips or parts of a computer, the framework is abstract and similar to that used
by economists. On the other hand, the computer science literature focuses on problems
in which variables and messages are drawn from finite sets, whereas the majority of
economics models are based on continuous parameters. Perhaps this is why, with the
recent exception of Segal (1996), economists have not made much use of this literature.

5.2. Communication procedures

The communication complexity models can all be more or less squeezed into the fol-
lowing framework. The scenario is an n-agent situation in which each agent i observes
information ei ∈ Ei. ei is also called i’s environment or type, and e ∈ E ≡ ∏n

i=1 Ei is
called the environment or the type profile. The problem is to choose an outcome a ∈ A,
dependent on the realization of the environment, via a communication procedure, and
thereby compute a goal function F : E → A. The communication procedure specifies
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the rules for exchanging information and selecting outcomes.2

A communication procedure could be part of a model in which the computation
and incentive constraints of agents are also modeled. However, here there are no
such constraints and instead there is only some measure of communication costs for
each communication procedure. Given such a measure, one can conduct the following
exercises: Fix a goal function and characterize the lowest-cost procedure that computes
it (the usual approach in computer science), or fix only a performance measure on goal
functions (e.g., expected payoff) and characterize the procedure that is optimal taking
into account both the communication costs and the performance of the computed goal
function.

When n ≥ 3, we can distinguish between broadcast communication, in which all
messages are received by all agents, and targeted or networked communication, in
which messages can be sent to a designated set of recipients, upon which the cost of the
message depends. We begin with broadcast communication because it is simpler.

In a broadcast communication procedure, at each moment in time all agents have
the same information about the history of messages (although messages can be sent
simultaneously). Therefore, if the outcome depends only on the final history of messages,
then the realized outcome is common knowledge among the agents and can be physically
implemented by any of them or even by an outside observer. Such a procedure is called
non-parametric. In a parametric procedure, the action space is decomposed into one
or more decision variables or actions after the exchange of messages, and each of these
is selected privately by one of the agents. Using parametric procedures, when allowed,
reduces communication costs because the outcome can depend on information that is
never announced publicly.

Parametric and non-parametric broadcast communication procedures can be repre-
sented by the following:

1. An extensive game form for the n agents, with perfect information and simultaneous
moves, as defined in Osborne and Rubinstein (1994, Chapter 6).3 The moves or
actions are called messages. Let Hi be the histories after which agent i sends a
message and let Mih be the message space or set of messages available to i after
history h ∈ Hi. Let Z be the set of terminal histories.

2. In the non-parametric case, an outcome function g : Z → A. In the parametric
case, for each h ∈ Z, a decomposition A1h × · · · × Anh = A and outcome functions
{gih : Ei → Aih}n

i=1.
3. A communication rule fih : Ei → Mih for each agent i and each h ∈ Hi.4

Each environment e ∈ E determines the messages sent after each history and hence the
terminal history that is reached, and the outcome F (e) that is obtained after this terminal

2. The term “procedure” comes mainly from the planning literature. Hurwicz (1960, 1972) uses the terms
“process” and “mechanism”, and the computer science literature uses the term “protocol”. I have not used
“process” because the “to process”, “processors”, “information processing” and “stochastic processes” are
also used in this paper. I have not used “mechanism” because in the mechanism design literature with incentive
constraints initiated by Hurwicz (1972), the term “mechanism” eventually came to refer only to components
1 and 2 of a non-parametric procedure, as defined below. I have not used “protocol” because this term is not
standard for economists.
3. Equivalently, with multiple stages and observed actions, as defined in Fudenberg and Tirole (1991, Chapter
3).
4. The communication rules and outcome functions (in the parametric case) for agent i constitute i’s decision
rule, and are analogous to a strategy for i in a Bayesian game.
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history. F : E → A is the goal function computed by the procedure.5

A measure of communication costs needs to specify the cost of each message—
which then determines the cost of each terminal history—and a way to aggregate the
costs of the possible terminal histories. The standard way to measure the cost of a
message with message space Mih is by the “size” of Mih, as follows.

Suppose first that all message spaces are finite; this is the approach taken by Yao
(1979) and most of the communication complexity literature in computer science. If a
message space Mih contains k elements, then the message can be encoded with log2 k
bits, and so this is the size of the message.6

Suppose instead that all message spaces are Euclidean; this is true in the majority of
economics models. The cost of a message from Mih might be measured by dim(Mih).
This measure is harder to interpret and there is the possibility of encoding an arbitrary
amount of information into a message (“information smuggling”). Therefore, Mount
and Reiter (1974, 1977) and Abselon (1980) develop smoothness restrictions on the
communication rules so that several real numbers cannot be encoded into a single real
number. Given such a Euclidean procedure, we can construct a discrete procedure in
which each real number is mapped continuously into (0, 1) and approximated by the first
k bits of its binary expansion. The communication cost of a message from Mih is then
k dim(Mih). As k → ∞, the goal function computed by the discrete procedure converges
pointwise to the one computed by the Euclidean procedure.

Having assigned a size or cost to each message, we can sum the cost of a sequence of
messages to obtain the communication cost of any history. There are several ways to then
assign an overall communication cost to a procedure. The worst-case communication
cost is the supremum of the costs of all possible histories. An alternative is to calculate
the expected communication cost of the histories with respect to some distribution on
E. For finite procedures, we can instead use log2 of the number of terminal histories;
this lies between the minimum cost and maximum cost of the histories. Yet another
alternative is to restrict each agent to use the same message space Mi at all times and
measure the communication cost be the size of M1 × · · · × Mn, i.e., of the procedure’s
“language”. Because a long message can be sent as a sequence of short messages with
smaller message spaces, this measure is only meaningful if restrictions are imposed on
the memory of the communication rules and outcome functions, e.g., if these can only
depend on the last message sent by each agent.

Networked communication procedures can be represented by an extensive game
form with incomplete information. Only the parametric case makes much sense, unless
there is an outside observing who hears all messages. The selection of actions by
the agents should be incorporated into the extensive game form in order to describe
the information available to each agent when choosing actions. The measurement of
communication costs is messy. First, some moves in the extensive game form represent
private actions rather than messages. Second, costs depend on the recipients of each

5. An extension is where communication rules may be random (mixed strategies) and F must be evaluated
correctly with a certain probability.
6. Information theory provides refinements on this measure using data compression that depends on the
statistical distribution of the possible messages and on randomization that I have not introduced. If there
are no simultaneous moves, then any finite procedure can be converted to a binary procedure in which each
message space has two elements. (A long message is replaced by a sequence of one-bit messages.) As
explained in Kushilevitz and Nisan (1997), it is then possible to incorporate such encoding into the extensive
game form and communication rules.



Van Zandt • Decentralized Information Processing in the Theory of Organizations 10

message, as determined by the extensive game form.

5.3. Iterative procedures and message-space complexity

Hurwicz (1960) developed abstract iterative communication procedures.7 An iterative
procedure specifies for agent i a message space Mi and a response function fi : M×Ei →
Mi, where M ≡ ∏n

i=1 Mi. Agents simultaneously broadcast messages at each iteration.
If at step t, messages mt = 〈mt

1, . . . , mt
n〉 are exchanged, then at step t + 1, agent i sends

the message mt+1
i = fi(mt , ei). An exogenous initial message profile m0 ∈ M starts the

process. In the non-parametric case, there is an outcome function g : M → A such that
if the procedure is stopped after T iterations then the outcome is g(mT ).

A message m = 〈m1, . . . , mn〉 is stationary if mi = fi(m, ei) for all i. The presumption
is that the procedure is run until a stationary message is reached or is approximately
reached. Suppose that, for every environment e, the sequence of messages converges to
a stationary message µ̂(e) either asymptotically or after finitely many iterations. Then
the goal function that is computed by the procedure is g ◦ µ̂ : E → A.

Observe that the decomposition of the resource allocation problem in Section 4
can easily be represented by such an iterative communication procedure, as can many
planning procedures. Another example is the following representation of the competitive
price mechanism for classical exchange economies. The environment ei is i’s endowment
and preferences, and a is an allocation. The goal is to find a Pareto optimal allocation.
In period t, agent 1 sends a price pt and each agent i = 2, . . . , n sends a net trade zt

i . The
price pt is the gradient of agent 1’s utility function when her net trade is − ∑n

i=2 zt−1
i , that

is, when she balances the market given the net trades of the other agents in the previous
exchange of messages. Agent’s i’s net trade zt

i is chosen to maximize i’s utility given
the Walrasian budget set for the price pt−1. Observe that if the procedure is stopped at
period T , the net trade of agent i ≥ 2 is zT

i and the net trade of agent 1 is − ∑n
i=2 zT

i . If the
procedure is stopped at a stationary message, then the resulting allocation is a Walrasian
equilibrium. This is similar to a Walrasian tatônnement process or a Lange-Lehrer
planning procedure, but the adjustment of prices is performed by agent 1 rather than by
an auctioneer or central planning bureau.

These procedures illustrate the advantage of interactive communication over one-
shot communication. To compute, with a single exchange of information, an approxi-
mate solution to the resource allocation problem would require that each agent transmits
an approximation of his entire utility function. In contrast, in the iterative procedures,
detailed information is eventually transmitted about the utility functions in a neighbor-
hood of the approximate solution, but little information is transmitted about the functions
in the rest of their domains.

As explained in Section 5.2, a measure of the amount of communication that takes
place in each iteration is log2 #M if M is finite, or dim(M) if M is Euclidean. However,
measuring the total communication requirements of such iterative procedures is tricky,
as it depends on how many iterations are made before the calculation is stopped. If
the sequence of messages only converges asymptotically to a stationary message, then
total communication would have to be measured by the number of iterations needed to
calculate an approximate solution to within a given error.

Rather than attempt such difficult measurement of total communication, this litera-

7. See Reiter (1977) for an introduction to the subject, and Hurwicz (1986) for an extensive exposition.
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ture measures communication requirements by the amount of communication that must
take place in each iteration, i.e., by the size of the message space M. This measure is
meaningful, as explained in Section 5.2, because the definition of an iterative procedure
requires that each round of messages depends only on the previous round of messages
and on the individual environments. Thus, dim(M) is also a proxy for the complexity
of the decision rules, in the sense that it measures the size of their domains.

A further simplification was made, initially at least, by ignoring the question of
whether the procedures actually converge to stationary messages. That is, the function
or correspondence computed by a procedure is defined to be g ◦ µ, where µ(e) is the
set of stationary messages when the environment is e. The message-space literature
thus posed the following question: Given a goal function F : E → A to compute, what
is the iterative communication procedure with the smallest message space such that
g ◦µ = F? Since we can at least check in one round of information exchange whether a
candidate message profile m∗ is stationary given the environment, this exercise is similar
to determining the complexity of checking whether a given answer is correct, rather than
of computing an answer from scratch.

In the competitive price mechanism outlined above, the set of stationary messages
is the set of Walrasian equilibria. Hence, this procedure is presumed to compute the
Walrasian correspondence, even though substantial restrictions on the set of possible
utility functions (environments) would be needed to ensure that such a tatônnement
procedure actually converges. In the procedure, agent 1 sends normalized prices from
an (�−1)-dimensional space, where � is the number of commodities. Because of Walras’
Law, agents 2, . . . , n only need to send excess demands for �−1 commodities. The total
dimension of the message space is thus n(�− 1). Mount and Reiter (1974) and Hurwicz
(1977) have shown that, for classical economies, this competitive price mechanism is
informationally efficient for achieving Pareto-optimal allocations.

In later work, researchers added the restriction that the procedures converge globally
or locally, i.e., that the procedures be globally or locally stable. This requirement
typically increases the minimum size of the message space. See, for example, Mount
and Reiter (1987), Jordan (1987), and Reiter and Simon (1992). Also, Moore et al.
(1996) considers rules for stopping in finite time.

A variation of this paradigm that is suitable for studying organizational structure has
recently been developed by Marschak and Reichelstein (1995, 1996). Communication is
networked, one counts the size of each communication link connecting two agents, and
there are potential limits on individual communication complexity. These authors use
the model to study the structure of firms for a fixed number of agents, but, as with other
models with individual communication constraints, it could incorporate an endogenous
number of information-processing agents.

5.4. Team theory

Another approach to modeling communication costs in organizations is team theory,8

introduced and developed by Marschak (1955), Radner (1962), and Marschak and
Radner (1972). (See Marschak (1986, Section 3) for a survey.) The team-theory and
the message-space literatures are quite different. First, team theory imposes statistical

8. The term “team theory” is sometimes used more generally for any model of group decisions with no
conflicts of interest, in which case it includes just about all the literature surveyed in this paper.
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assumptions on the environments and includes a state-dependent payoff function so that
it is possible to compare the expected payoffs of different outcome functions; these can
thus be endogenous. Second, team theory studies procedures with finite depth (finitely
many rounds of communication), rather than studying stationary messages of iterative
procedures. Third, team theory did not develop and has not made use of a standard
specification of communication costs; hence, most team theory models have studied a
small number of game forms that are motived informally by communication complexity.

These three differences are interrelated. The message-space literature has studied
how to compute an outcome that is optimal conditional on the pooled information
of the agents, without actually communicating all the private information. In many
cases, however, this has not been possible via a finite exchange of finite-dimensional
messages. In contrast, by incorporating statistical decision theory, team theory can
compare procedures that exchange too little information to calculate the optimum, so
that ultimately there is truly decentralized decision making, in which different decision
variables are controlled by different agents and decisions are not the same as those that
would be taken if all information were pooled.

On the other hand, the incorporation of statistical decision theory made the mea-
surement of communication complexity more difficult in team theory. The smoothness
restrictions that make the dimension of Euclidean message spaces a meaningful measure
of complexity in the message-space literature lose their bite in a statistical model. For
example, let E ≡ R2 be the sample space of two normal random variables ẽ1 and ẽ2, and
let M ≡ R be a message space. There is no smooth map f : E → M such that observing
f (ẽ1, ẽ2) fully reveals ẽ1 and ẽ2. However, for any epsilon ε ∈ (0, 1), there is a smooth

map f : E → M such that the mean-squared error E
[

(ẽ j − E
[
ẽ j

∣∣ f (ẽ1, ẽ2)
]
)

2
]

is less

than ε for j = 1, 2.
Given the lack of measures of communication complexity, team theory has focused

on the characterization of the individual decision rules (the strategy profile) that max-
imize the expected payoff, given a fixed game form. This is multi-person statistical
decision theory. The simplest interesting class of problems is when there are n players
who observe private signals about the state of nature and then simultaneously choose
actions. (This is a Bayesian game in which players have the same payoffs for every
realization of the state and every action profile.) The difference between this and a
single-person static Bayesian decision problem is that in the latter the problem is to
choose a plan (mapping from states to actions) subject to a single measurability con-
straint (the plan must be measurable with respect to the decision maker’s information)
and in the former each of the n plans must satisfy its own measurability constraint.

In this example, there is no communication. A richer example is the resource
allocation model studied in Radner (1972), Groves and Radner (1972), Arrow and
Radner (1979), and Groves (1983). The basic decision problem is the resource allocation
problem (1) stated in Section 4, and the organizational structures typically resemble the
decomposition given there, with a central production manager allocating resources and
each unit manager controlling the unit’s local decision variable. However, whereas the
decomposition and message-space literatures were interested in the ability of an iterative
procedure to asymptotically compute the optimal solution for any data in a specified
domain, these team theory models consider fixed, finite exchanges of information that do
not resolve all uncertainty before decisions are made. A small sample of other models is
Beckmann (1958), Groves and Radner (1972), Marschak (1972), Cremer (1980), Aoki
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(1986), and Green and Laffont (1986).
One paper, by Geanakoplos and Milgrom (1991), is different because the agents are

drawn from a pool of managers with limited ability to acquire information about the
environment. These constraints are motivated by the time it takes a manager to read and
understand information. The decision problem is to allocate resources to a set of shops.
An organization or team is a hierarchy whose leaves are the shops and whose interior
nodes are managers selected from the pool. The managers recursively disaggregate the
resource allocations, after acquiring information about the cost functions of the shops
from external sources. (There is no flow of information up the hierarchy.) The value of
decentralization, i.e., of hierarchies with more managers, is roughly that it allows more
information to be used to allocate resources.

Because this paper models constraints on the ability to process raw data, it is closely
related to the literature on decentralized computation reviewed in Section 6. However,
the paper does not explicitly model individual constraints on calculations nor does it
model information processing delay, both of which are emphasized by that literature.
Furthermore, a basic part of the analysis is the characterization of the optimal decision
rules for a fixed organization and information structure, which is a classic team-theory
exercise.

5.5. Communication and incentive constraints

Incentive compatibility means that the agents’ preferences over outcomes are given
exogenously and the strategy profile that is part of a communication procedure must
be a game-theoretic equilibrium. Hurwicz (1972) introduced incentive compatibility
into the design of decentralized communication procedures, but the incentives-based
mechanism design literature that followed has for the most part ignored communication
costs. Most of it makes use of direct revelation mechanisms in which, in one round
of simultaneous communication, all agents communicate all their private information.
However, there is some research that combines incentive and communication constraints.

The simplest exercise is to add communication costs to a standard mechanism design
problem, with the restriction to one-stage simultaneous-move mechanisms. The agents
and their environments are defined as in Section 5.2. A mechanism is described by a
message space Mi for each agent i and an outcome function g : M → A, where again
M = ∏n

i=1 Mi.9 Exogenously given is the utility function ui : A×Ei → R for each agent i.
Each agent i observes either her own environment or the entire profile of environments,
and announces (at the same time as the other agents) a message mi ∈ Mi. If agents
observe the entire profile of environments, the solution concept is Nash equilibrium.
If they observe only their own environment, there is some probability measure on E
and the solution concept is Bayesian-Nash equilibrium. If µ(e) is the set of equilibria
when the environment is e, then the goal function implemented by the mechanism is
g ◦ µ : E → A.

The standard implementation problem is to take as given a goal function F : E → A
and ask whether a mechanism exists that implements F . This can be modified by

9. In abstract mechanism design, Mi may be the strategic-form representation of a dynamic extensive form.
However, the size of the strategic-form strategy space is not a good measure of the communication requirements
of extensive forms. For example, suppose agent 1 announces a number, which is observed by agent 2, and
then agent 2 announces a number. The strategy space of agent 1 is R and is one-dimensional, but that of agent
2 is RR, and hence is infinite dimensional.
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asking which of the mechanisms that implements F has the smallest messages space
M. This problem was set up in Hurwicz (1972), and has been studied, for example,
in Williams (1986), Reichelstein and Reiter (1988), and Hong and Page (1994), using
Nash implementation.

The standard mechanism design problem introduces preferences of the mechanism
designer (principal) over goal functions and characterizes the principal’s preferred mech-
anism. This exercise can be modified by adding a cost to mechanisms that is increasing
in the size of the message space or simply imposing a bound on the size of the message
space, and then asking which mechanism is preferred by the principal taking into account
both the goal function that is implemented and the communication cost. An example of
such an exercise is Green and Laffont (1987), which also uses Nash equilibrium.

There is a close formal relationship between static Nash implementation and Hur-
wicz’s static reduction of iterative procedures. Given a mechanism 〈M, g〉, we can write
an agent’s best reply function as fi : M×Ei → Mi. Given an environment e, a Nash equi-
librium in the game induced by the mechanism is a stationary message when we treat fi

as agent’s i’s response function in an iterative communication procedure with message-
space M and outcome function g. Thus, if the mechanism 〈M, g〉 Nash-implements a
goal function F , then

〈
M, g, { fi}n

i=1

〉
is an iterative procedure that evaluates F . The

difference between the design of an iterative procedure that evaluates F and a mecha-
nism that implements F is that, in the former, the response functions can be chosen by
the procedure designer whereas in the latter, they are determined endogenously by the
agents’ utility maximization.

As I have presented them above, these exercises of static Nash implementation are
very different in spirit from the communication problems described in Sections 5.2–5.4.
They implicitly presume that all agents know each other’s information and the goal
function is computed, in the sense that its value is communicated to the mechanism
designer, by a single exchange of information. However, the interpretation intended by
these authors is that the Nash equilibria are the asymptotic steady states of an iterative
procedure in which initially information is asymmetric. For this, we should imagine
that trade or outcomes actually take place every period. This interpretation is partially
supported by the large literature on learning in repeated games with initially asymmetric
but fixed information in which adaptive or rational learning by agents can induce con-
vergence to the symmetric information Nash equilibrium. The problem of incorporating
incentive constraints in explicit dynamic iterative communication procedures with fixed
information is outlined and explored in Roberts (1987), which emphasizes examples
from the planning literature.

Another approach is to model the short-run revelation of information, as in mecha-
nism design with asymmetric information between the agents, using dynamic extensive
game forms. With networked communication, we can take into account individual
communication requirements. In particular, the principal has very high communication
requirements in static mechanisms because she must listen to all messages. These re-
quirements may be reduced by mechanisms in which some agents communicate with
each other but not with the principal, such as when a principal contracts with one agent,
who then contracts with a second agent. Such mechanism design (but so far with
somewhat ad-hoc communication constraints and cost) has been studied in Mookherjee
and Reichelstein (1995, 1996), McAfee and McMillan (1995), Laffont and Martimort
(1996), Baliga and Sjöström (1996), and Melumad et al. (1997), as well as in the
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incomplete contracts literature.

6. Computation constraints

The communication complexity literature is based on the idea that agents are exoge-
nously endowed with private information that is needed to compute a decision rule.
More recently, economists have used models of decentralized computation, in which
the computation constraints of individual agents are also modeled. Agents with no prior
private information may thus be hired for the sole purpose of sharing information pro-
cessing tasks. Hence, this is a good paradigm for studying endogenous administrative
staffs.

In Section 6.1, I briefly outline the potential specifications of a model of decentral-
ized or parallel computation. Section 6.2 reviews models in which the problem is to
compute an exogenously given function, and Section 6.3 considers models of real-time
computation, in which the problem is to compute an endogenous decision rule in a
temporal decision problem.

6.1. Parallel and distributed processing

Simple models of joint computation by humans, which I refer to as decentralized
computation, naturally resemble simple models of parallel or distributed computation,
as joint computation by machines is called in computer science. A model of parallel,
distributed or decentralized computation specifies (i) how each agent calculates and (ii)
how agents communicate and coordinate their computation. The specification involves
breaking down these tasks into steps that take up the agents’ time, and also describing
the memory capacities of the agents and the information transmission capabilities of the
network that connects them.

Note that such a model can provide a richer and more detailed representation of
communication than in the communication complexity models of Section 5.2, because
it can specify the steps that an agent must take to send and receive messages. In
particular, individual constraints on reading and interpreting raw data and messages
can be included. In such a model, the distinction between individual communication
constraints and information transmission costs is explicit. The latter can also be included
and can be measured in the same way as in Section 5.2.

Computer scientists distinguish between parallel and distributed computation. Mod-
els of distributed computation emphasize communication costs—including transmission
costs—and coordination problems due to asynchronous operation of the agents, whereas
models of parallel computation do not. Thus, parallel computation models are simpler
but are most suited to situations in which the processing agents are nearby and tightly
coordinated, such as are the components of a multiprocessor computer; in contrast, mod-
els of distributed computation are more realistic when agents are loosely coordinated
and spatially separated, such as are workstations in a wide-area computer network.

The simplest model of parallel computing is the PRAM (Parallel Random Access
Machine). This model suppress all communication costs, including individual com-
munication constraints, and memory constraints. Since agents’ memories can be kept
identical by instantaneous exchanges of messages, it is possible to imagine that the
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different agents simultaneously manipulate the same memory bank. It is also usually
assumed that all agents are identical, which means that they are capable of executing the
same elementary operations (e.g., calculating the sum of two items in the memory and
storing the result in the memory) with the same delays. It is then possible to describe
an algorithm by simply listing the operations that are performed in each moment of
time. It does not matter which operations are assigned to which agent (as long as no
agent is assigned two operations at the same time), because all agents are identical and
have equal access to the global memory. This idealized model is used in theoretical
computer science because of its simplicity, and provides at least lower bounds on parallel
complexity.

Of course, human organizations are more realistically modeled by distributed compu-
tation. Furthermore, models of parallel computation with no communication constraints
are not always useful for studying organizational structure, because the flow of informa-
tion is not determinate. Nevertheless, many of the models of decentralized computation
used so far by economists do not incorporate sophisticated measures of transmission
costs or the problems associated with asynchronicity, in order to focus on individual
computation and communication delays.

Most models of computation in computer science are based on discrete data repre-
sentations and operations, whereas most economic models have continuous variables
and analytic functions. As long as the set of elementary operations is simple, it is easy
to interpret, e.g., a model of fixed-precision arithmetic as a model of arithmetic with
real numbers, and the former will approximate the latter. However, a general model of
computation with real numbers requires smoothness restrictions to prevent “computation
smuggling”. Such a model is developed by Mount and Reiter (1990) and Reiter (1996).

6.2. Batch processing

In batch processing, there is a given function that must be computed. All inputs
are available at the same time, and delay is measured by the time between when the
computation begins and when the final answer is computed. In serial batch processing
(where serial means with a single agent), complexity is measured mainly by this delay,10

which measures both how long one has to wait for an answer and how long the single
agent is busy (work or CPU time). With parallel batch processing, delay and processing
costs are no longer the same, and parallelization entails a trade-off between them. The
benefit of parallelization is that some operations can be performed concurrently and this
reduces delay. The potential cost of parallelization is that it increases processing costs,
e.g., due to costs of communication between the processing agents.

Economic models of batch processing have studied associative computation more
than any other problem. This is because it is simple and because it has a natural tree
structure that can be interpreted as the hierarchical structure of organizations. It is also
a very important and prevalent class of computation problems, and includes complex
tasks such as project selection or aggregation of cost functions.

The efficient algorithms for associative computation with a PRAM are illustrated in
Figure 1 for finding a maximum. When computation begins, the data are stored in the
memory. Each cycle, the data or previous results are assigned in pairs to agents, and each
agent computes the maximum of the two assigned numbers. The answer is obtained in

10. And perhaps also, e.g., by memory requirements.
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Figure 1. Associative computation by a PRAM via a balanced binary tree (Gibbons and Rytter
(1988, Figure 1.2)).

�log2 n cycles, and there are n − 1 operations. In contrast, if there were only a single
agent, this agent would perform the n − 1 operations consecutively and the delay would
be n−1. In this case, with both serial and parallel processing, the processing cost, equal
to the number of operations, is n− 1. However, if there were communication costs, then
the parallel algorithm would be more costly.

The computation is represented by a balanced binary tree in Figure 1, but note that
the nodes are operations, rather than agents. Hence, we cannot interpret the tree in Figure
1 as the hierarchical structure of the organization. Furthermore, the flow of information
is indeterminate with the PRAM, because there are no communication costs. In each
cycle, the operations performed can be assigned arbitrarily to the agents. For example,
in Figure 1, a agent might perform the left-most operation (max{3, 7}) in cycle 1, and
then the right-hand operation (max{9, 3}) in cycle 2.

To make determinate the flow of information between individual agents, which the
literature sometimes interprets as organizational structure, a model of computation with
communication costs is needed. Radner (1993) uses a model of associative processing
with individual communication constraints in which there is one additional operation
for each message sent and processed. Radner (1993) characterizes the algorithms that
are efficient with respect to delay and processing costs. Keren and Levhari (1979,
1983) can also be interpreted as the Radner model of associative computation, with
the exogenous restriction that the communication networks be balanced hierarchies.
However, although Radner (1993) finds that the efficient networks are hierarchical, they
are not balanced and there is even skip-level reporting, which means that a manager
can have subordinates with varying ranks. In fact, in the efficient hierarchies, all agents
process the same amount of raw data.

Several new considerations arise when there is a flow of computation problems, as
opposed to a one-shot computation problem. First, the workload has a new parameter—
the throughput (problems per unit time). If agents are paid on an hourly basis and a
different network can be used for each problem, then higher throughput can be handled
just by setting up additional networks to process the problems. Under these assumptions,
the computation of each problem is separate and should be performed the same way as
in the one-shot case. However, if the agents are salaried, then they must be paid even
when idle and the scheduling problem may lead to more regular hierarchies (Radner
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(1993)). Nevertheless, Van Zandt (1997d) shows that the efficient networks are not even
hierarchical and the processing of each problem closely resembles the efficient process-
ing for the one-shot case. A stationarity restriction, meaning that each problem must
be computed by the same network in the same way, has more significant consequences,
because it is not possible to increase throughput simply by creating more networks.
Bolton and Dewatripont (1994), using a generalized computation model, show that this
restriction can lead to more regular hierarchies.

We can model the resource allocation problem as a batch processing problem. This
provides an alternate approach to quantifying the communication and computational
requirements of resource allocation processes, that is different from the measures that
have been used in the decomposition, message-space and team theory literatures. Ne-
mirovsky and Yudin (1983) and Ibaraki and Katoh (1988) provide a number of results
on the complexity of resource allocation and other constrained optimization. However,
Friedman and Oren (1995) were the first to study an algorithm that resembles decentral-
ized communication procedures. They study the complexity of a price mechanism for
classical economies. Rather than just studying stationary messages or convergence, they
measure how many iterations are needed to achieve a given level of error. Furthermore,
they model the calculations agents must perform to compute their messages. They
calculate a bound on the run time as a function of the number n of agents and the error.

What was understood in the earlier literature on decomposition methods and com-
munication procedures, but was not made explicit until Friedman and Oren (1995),
is that the iterative procedures not only economize on communication, but they also
decentralize computation tasks among the agents. In Friedman and Oren (1995), the
center must still aggregate demands, the complexity of which increases with the number
of agents, but at each iteration the agents are computing their own excess demands. If
the agents instead sent their entire utility functions to the center, the center might still
use the same iterative algorithm, but the computational load of the center would greatly
increase.

Other models of decentralized batch processing include Hong and Page (1995) and
Li (1997). Queueing models with stochastic arrivals of computation tasks include
Malone and Smith (1988) and Beggs (1995). As all these authors consider problems
other than associative computation, the hierarchical structure that is a natural part of
associative computation is sometimes not present. This is realistic, as information flows
in organizations are typically not fully hierarchical even if there is a hierarchical structure
of authority. Jordan (1995) is a model of hierarchies, but they are decision trees. His
paper studies the evolution of organizational structure. Miller (1996) also drops the
constrained-optimal approach and instead studies the evolution by genetic algorithms of
associative computation hierarchies.

6.3. Real-time computation

In the previous section, I noted that computational delay is an important cost (measure
of complexity) of computation. Furthermore, the importance of delay in organizations
has long been discussed in the economics literature. For example, Kaldor (1934, p. 78)
observed that coordination tasks arise only in changing, dynamic environments, and
Robinson (1958, Chapter III) emphasized managerial delay as a limit to firm size. Hayek
(1940, pp. 131-132), in a criticism of the iterative adjustment processes proposed by
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Lange (1936, 1937) and Dickinson (1939), which assume that the underlying economic
data are constant, states:

In the real world, where constant change is the rule, … whether and how far
anything approaching the desirable equilibrium is ever reached depends entirely
on the speed with which the adjustments can be made. The practical problem is
not whether a particular method would eventually lead to a hypothetical equi-
librium, but which method will secure the more rapid and complete adjustment
to the daily changing conditions ….

However, delay and its affect on organizations are not well captured by the models of
batch processing described in the previous subsection.

Delay is costly in decision problems because it increases the lag upon which decisions
are based. To capture this cost, we need to model the real-time computation of dynamic
decision problems, i.e., the “adjustment to the daily changing conditions”. This means
that we begin with a temporal decision problem in which information becomes available
over time and a sequence of decisions is made. The computation of decision rules must
then adapt itself to the dynamic structure of the decision problem.

Marschak (1972) studies several real-time adjustment processes for allocating re-
sources and explores some of the costs of delay, although the computation is not explicitly
modeled. Real-time parallel computation was first used in the theory of organizations
by Radner and Van Zandt (1992) and Van Zandt and Radner (1997), for a problem of
predicting the sum of a family of stochastic processes. The purpose of these papers is
to characterize returns to scale.

The results in Van Zandt and Radner (1997) illustrate how replication arguments
for deriving non-decreasing returns to scale of firms break down when information
processing is modeled. By replication arguments, I mean the claim that returns to
scale should be non-decreasing because a large firm can mimic the activities of several
small firms. Intuitively, such arguments are not valid because mimicking the activities
of several small firms requires that the subunits not communicate, coordinate their
activities, or allocate resources except as independent firms would do, such as through
markets. There can be no headquarters that controls the subunits because such control
would incur managerial costs that the independent firms avoid. It is hard to envision
that such informationally disintegrated units constitute a single firm.11

Van Zandt and Radner (1997) use a replication argument to show that returns to scale
are eventually increasing, under certain statistical assumptions, when the sampling of
data is costly but information processing is instantaneous. A firm that must predict the
sum of kn processes can divide the processes into k groups or divisions of size n, and
each division can imitate the sampling and prediction policies of a firm with n processes.
The overall prediction is the sum of the divisions’ k predictions. This argument does
not work when computation of decision rules is modeled. If the firm divides itself into
k divisions that imitate the computation procedures of a firm of size n, then the result is
k predictions that must be aggregated. Because of the aggregation delay, the prediction
of the firm of size kn uses data that is older than the prediction of a firm of size n.

11. However, a theory of how informational integration is related to the boundaries of the firm, combining
decentralized information processing and the property-rights theory of the firm (see, e.g., Hart (1995)), has
not yet been developed.
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Van Zandt (1997a) uses the same decision problem as in Radner and Van Zandt
(1992) and Van Zandt and Radner (1997) to explore some of the special properties of
real-time computation. For example, with batch processing, there is an unequivocal
reduction in delay that results from increased parallelization. However, with real-time
processing, each decision may use data of heterogeneous lags and hence there is no
single measure of delay. The speed-up from parallelization is ambiguous, because when
processing a report sent by another agent, an agent forgoes processing raw data that has
a lower lag than all the data that went into the report. Van Zandt (1997d) present an
example where there is no decentralization because of this decision-theoretic cost, even
if the managerial wage is zero and hence decentralization has no resource cost.

Real-time computation is used in Van Zandt (1997b, 1997c, 1997e) for the prob-
lem of allocating resources. These papers describes a class of hierarchical allocation
procedures in which information about the operatives’ cost parameters flows up and
is aggregated by the hierarchy, while allocations flow down and are disaggregated by
the hierarchy. Multilevel hierarchies and decentralized decision making arise due to
computational delay, rather than communication constraints. Offices at the bottom of
the hierarchy allocate resources to a small number of shops and can thus compute their
allocations quickly, while offices at higher levels use older information but can still make
advantageous transfers to the subdivisions. Hence, the model illustrates how decentral-
ization of hierarchical decision making can arise purely because of computational delay,
even when there are no communication costs, all agents are identical and have the same
free access to data about the environment, and there are no incentive problems.

7. Down the road

The bounded rationality and the incentive approaches to organizations have so far devel-
oped mainly independently, because of the advantages of first studying isolated phenom-
ena. However, it has always been recognized that incentive problems in organizations
are tightly bound to information processing. Contracting problems in management only
arise because bounds on managers’ information processing capacity lead to delegation
of managerial tasks. The incompleteness of contracts that has been important in the
theory of organizations is loosely motivated by bounded rationality. Furthermore, as
studied in Aghion and Tirole (1995) and Chang and Harrington (1996), organizational
structure can affect the incentives of agents to acquire and process information, because
the structure affects the influence agents have over the organization’s decisions. The
integration of communication complexity and mechanism design was reviewed in Sec-
tion 5.5. That area of research is still in a preliminary stage. Furthermore, there has
been no integration of formal models of decentralized computation with contracting and
mechanism design with incentive constraints.

Bounded rationality within organizations is also relevant to inter-organizational
strategic interaction. The models of organizations surveyed here can be the basis for
modeling boundedly rational players (where the players are firms or other types of
organizations) in games. The real-time learning models are particularly suitable. For
example, Meagher (1996) is a real-time decentralized information processing model
in which the decision problem is to choose location or product characteristics when
launching new products, given changing preferences of consumers. One can imagine
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embedding this into an oligopoly model with differentiated products.
A question that has eluded satisfactory general treatment is the comparison of the

computational efficiency of the many organizational forms, including market mecha-
nisms and bureaucratic structures, that are used to coordinate economic activity. This
question was posed by the markets versus planning and markets versus firms debates
discussed in Section 3. This survey has concentrated on information processing models
of various bureaucratic structures. There is also a large and rapidly growing literature
on the dynamics of decentralized interaction between agents who are modeled as com-
puting machines, including the literature on agent-based computational economics (see
Tesfatsion (1997) for a survey) and multi-agent systems (e.g., Youssefmir and Huber-
man (1995)). However, the agents are not modeled in a way that would easily allow the
representation of and comparison with bureaucratic procedures.

Appendix: Related research in other fields

As noted in the introduction, I have not attempted to give a proper interdisciplinary
review of the theory of decentralized information processing in human organizations.
As a slight compensation, I will briefly mention some of the fields that were skipped.
Much of this research is more applied than what was reviewed in the body of the paper,
although I have still omitted the empirical research from all disciplines. Note that the
boundaries between the areas described below are not sharp.

In the fields of distributed computation and distributed artificial intelligence, there is
a new awareness that the interaction between machines and also the human participants
in distributed computer systems involves problems that economists have long studied,
such as the allocation of scarce resources, the dynamics of semi-coordinated interactions
between agents, and incentives of autonomous agents. For example, Waldspurger et al.
(1992), Cheng and Wellman (1996), and Lee and Durfee (1995) study price-based
resource allocation mechanisms related to those reviewed in this survey and Sandholm
and Lesser (1995) include incentive constraints in distributed systems. Huberman (1996)
reviews other relationships between economics and distributed systems.

Organization theory from a management and sociological perspective has a long his-
tory of studying human organizations as information processing networks (e.g., March
and Simon (1958), Simon (1976), and Galbraith (1977)). Recent research incorporates
explicit models of computation and increased use of mathematical modeling and simu-
lation methods for studying the performance and evolution of organizations. A sample
can be found in Carley and Prietula (1994); see Carley (1995) for a review.

The field of management and information systems also contains substantial research
on information processing by humans and machines in organizations. Some of this falls
under the new name of “coordination theory”. See, for example, Malone (1987). For
a more interdisciplinary review of this and related areas of applied organization theory,
see Van Alstyne (1997).
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