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I. Introduction

This paper builds a network model of strategic experimentation. Individuals experiment and the

results are non-excludable along social links. We see this public goods nature of experimentation

in many areas of economics. Consumers benefit from research of friends and family [e.g., Feick

and Price (1987)]. In medicine and other technical fields, professional networks can shape research

patterns [e.g., Coleman et al. (1957), Burt (1987), Valente (1995)]. In agriculture, one farmer’s

experience with a new crop can benefit other farmers, and the physical and social geography of

the countryside can influence experimentation and learning [e.g., Foster and Rosenzweig (1995),

Conley and Udry (2002), Munshi (2003)]. In industry, it has been long posited that research

findings spillover to other firms. Information spread is often local and thus can depend on social

networks and the geography of industry and trade [e.g., Jaffe et al. (1993), Breschi & Lissoni

(2003), Guiso & Schivardi (2004)]. In all these settings, social structures and geography can

influence the incentive to innovate.

These findings raise a new set of research questions. How does the social or geographic

structure affect the level and pattern of experimentation? Do people experiment themselves or

rely on others? How do new links - links between communities or firms, for example - affect

experimentation and welfare?

This paper builds a model to address these questions. There is fixed social structure. People

desire new information and experimentation is costly. The results of experiments diffuse to linked

agents. Individuals decide how much to experiment knowing their results diffuse to their social

or geographic neighbors.

Our analysis yields three main insights. First, social networks can foster specialization. In

every social network there is an equilibrium where some individuals experiment and others com-

pletely rely on their efforts. In many, particularly asymmetric, social networks this extreme form

of free-riding is the only equilibrium outcome. In all social networks, such patterns are the only

stable outcomes. Hence, an agent’s position in a network can determine whether or not they

contribute to research and experimentation. Second, this specialization can have welfare bene-

fits. It may benefit the society as a whole for some agents to specialize in experimentation and

others to rely on their results. This outcome arises when specialists are linked, collectively, to

many people in society. Finally, new links can reduce overall welfare. A new link increases access
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to information, but also reduces an individual’s incentives to conduct his own research. Hence,

overall welfare can be higher when there are holes in a network — not everyone should be linked.

The literature on strategic experimentation has neglected network aspects, so far. Foster &

Rosenzweig (1995) build a model of strategic experimentation and test the model using data

from villages in India where farmers experimented with new high-yield-variety (HYV) crops.

They find evidence that results of experiments are a public good and that people free-ride; the

level of experimentation is less than is socially optimal. Bolton and Harris (1999) set out a general

theory; they consider a two-armed bandit problem when a group of individuals can all observe

the outcome of all others’ experiments. The results show that, while current experimentation

discourages current experimentation by others, current experimentation can encourage future

experimentation as players learn more about the underlying distribution of the payoffs. Our

innovation is the social network. We build a very simple model of experimentation and explore

how the link structure affects outcomes. We find that network characteristics have first-order

effects on experimentation patterns.

This paper has two parts. In the first, we study general networks. We characterize equilibrium

effort patterns, their stability, their welfare properties, and the effect of new communication links

on experimentation and welfare. In the second part, we construct specific network models to

capture main ideas in sociological and other literatures concerning patterns of experimentation

and communication. OurOverlapping Neighborhoods model captures a symmetric structure where

people learn from those close in geographic or social space, e.g., those who live in the same

neighborhood or have the same ethnicity. We explore increasing levels of societal integration.

Our Communities/Bridges model captures an asymmetric structure where people are divided

into disjoint communities, such as villages or firms. We explore increasing numbers of links —

bridges — between communities. Our Core-Periphery model captures an asymmetric, hierarchical

structure. We explore increasing density of links between core and periphery.

With these models, we refine our general insights to specific settings. In our study of over-

lapping neighborhoods, for example, we find that specialization has greater benefits when society

is more integrated. Local specialists can reach more people as the size of these neighborhoods

expand. In our study of communities, we find that new bridges have mixed effects. In the sociol-

ogy literature, bridges are beneficial because they bring new information into a community [e.g.,
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Granovetter (1973)]. We find that when an agent gains access to an outside source of information,

he may reduce his own research effort. This reduction has negative externalities. Welfare may

not fall, but there are distributional consequences. In our study of core-periphery structures, we

find that agents in the core can experiment relatively less than agents in the periphery. Core

agents have greater access to other agents’ information and hence have less incentive to expend

their own effort. This result corresponds closely to the argument that innovation often occurs in

the peripheries of social systems (e.g., Kuhn (1963), Jewkes et al. (1959), and Hamberg (1963)).

This paper complements a growing interest in networks and social learning. Empirical studies

now consider whether people gain information from those to whom they are socially linked, and

a new set of papers attempts to identify network effects on technology adoption (Bandiera and

Rasul (2001), Conley and Udry (2002), and Munshi (2003)). In the theory of social learning,

a few papers consider social networks: Bala & Goyal (1998, 2001) and Cowan & Jonard (2004)

construct models where agents learn the choices and payoffs only of linked individuals; they do

not address the initial generation of new information.1 We show that this generation depends

much on the network.

This paper also contributes to the theoretical literature on networks in economics.2 It pro-

vides the first analysis of a game played on a network when actions are strategic substitutes.

We especially introduce a new notion from graph theory to characterize the Nash equilibria (see

Proposition 3). This notion provides a natural, geometric expression of the interplay between

strategic substitutability and the network structure. The paper further develops a new research

strategy for the study of networks. It is often difficult, if not impossible, to obtain analytical

results for general graphs. Moreover, real world networks typically exhibit structural regular-

ities. We address both issues by constructing families of graphs to represent different social

environments. There is enough structure to obtain analytical results, and we model a precise en-

1For review of the social learning literature see Bikhchandani et al. (1998) and Cao and Hirshleifer (2000).
2Much work on networks considers the general properties of equilibrium networks. Contributions include My-

erson (1977), Aumann and Myerson (1988), Jackson and Wolinsky (1996), Bala and Goyal (2000), Jackson and
Watts (2002). For a comprensive collection see Dutta and Jackson (2003) and their (2003) review. There is a
growing literature which builds network models to represent different economic settings. Young (1999) and Morris
(2000) examine coordination games played in social networks. Bramoullé (2002a, 2002b) examines anti-coordination
games. Boorman (1975), Tassier (2000), Calvó-Armengol (2004), and Calvó-Armengol and Jackson (2004) study
job contact networks. Kranton and Minehart (2001) build a theory of networks of buyers and sellers. Goyal and
Moraga (2001) look at R&D collaboration networks between firms. Chwe (2000) studies coordination games and
communication networks. Bala and Goyal (1998, 2001) also consider communication graphs. Hendriks et. al.
(1999) studies airline networks.
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vironment. Our Overlapping Neighborhoods, Communities/Bridges, and Core-Periphery models

could be useful in a variety of other applications.

The paper is organized as follows. In the next section, we present the model and in Section

III, we study general communication graphs. In Section IV, we develop and analyze our families

of graphs. In Section V, we discuss the robustness of our findings to changes in the model’s

specifications. Section VI concludes.

II. The Model

A. Networks and Strategic Experimentation

In this section, we develop a model of strategic experimentation in a network. There are n agents,

and the set of agents is N = {1, ..., n}. Let ei denote agent i’s level of experimentation, or effort.
E.g., ei could be the amount of land dedicated to a new crop, as in Foster & Rosenzweig (1995).

Let e = (e1, ..., en) denote an effort profile of all agents.

Agents are arranged in a network, which we represent as a graph g, where gij = 1 if agent j

benefits directly from the results of agent i’s experimentation, and gij = 0 otherwise. We assume

that results flow both ways so that gij = gji. Since agent i knows his own results we set gii = 1.

Let Ni denote the set of agents that benefit directly from agent i’s experimentation, called i’s

neighbors: Ni = {j ∈ N\i : gij = 1}. Let ki ≡ |Ni| denote the number of agent i’s neighbors.
Agent i’s neighborhood is defined as himself and his set of neighbors; i.e., i+Ni.

We make two important assumptions concerning the diffusion of experimental results. First,

results diffuse one step and then stop. We make this assumption for simplicity and because it

reflects findings that information does not travel more than one or two steps (Friedkin (1983)).

The methods we develop here can be extended to diffusion of more than one step (see section V).

Second, agents are interested in the same kind of information, and a neighbor’s results gives the

same benefits as one’s own. With these assumptions an agent i derives benefits from the total of

his own and his neighbors experimentation: ei +
P

j∈Ni
ej .

We assume each agent receives benefits from experimentation according to a (twice-differentiable)

strictly concave benefit function b(e) where b(0) = 0, b0 > 0 and b00 < 0. With our assumptions

above, an individual i has benefits b
³
ei +

P
j∈Ni

ej

´
. To fix ideas for these payoffs, consider a

discrete example: ei is the number of experimental trials of a new technique. There are many such
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techniques, each with a different unknown value of output, distributed according to a distribution

F . Under the assumption that all trials are independent draws, the expected benefits from the

number of trials is the expectation of the first order statistic of e trials. The benefits b(e) are

then increasing and concave in e.

We assume the individual marginal cost of experimentation is constant and equal to c. An

agent i’s payoff from profile e in graph g is then

Ui(e;g) = b

ei +
X
j∈Ni

ej

− cei

In section V, we discuss the robustness of our findings to alternative specifications of the model,

including convex costs. A main interest of our simple quasi-linear form (besides its analytic

tractability) is that it allows us to focus on the effect of the structure.

B. Strategic Interaction

We specify the following game. Given a structure g, agents simultaneously choose experimentation

levels. For a profile e, each agent i earns payoffs Ui(e;g).We analyze pure strategy equilibria, as

there are no mixed strategy equilibria of this game.3 In the following analysis, we explore how

social structure influences the equilibrium experimentation.

III. Equilibrium Experimentation in General Graphs

A. The Shape of Equilibrium Profiles

We characterize Nash equilibria of the game. Let e∗ denote the experimentation level at which,

to an individual agent, the marginal benefit is equal to its marginal cost; b0(e∗) = c.4 Let

ei ≡
P

j∈Ni
ej be the total experimentation of i’s neighbors. It is easy to see that:

Proposition 1. A profile e is a Nash equilibrium if and only if for every agent i either (1)

ei ≥ e∗ and ei = 0 or (2) ei ≤ e and ei = e∗ − ei.

3Since the benefit function b(.) is concave and costs are linear, an agent would always earn higher expected
payoffs by playing the average of a set of effort levels than a mixture over the set of effort levels. Hence, there is
no Nash equilibrium where an agent plays a mixture of effort levels.

4Given b() is strictly concave, a level of search e∗ > 0 exists and is well-defined as long as b0(0) > c.
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The intuition is straightforward. Agents want to experiment as long as their total benefits are

less than b(e∗). Thus, if the benefits they acquire from their neighbors is more than b(e∗), they

do no experimentation. If the benefits are less than b(e∗), they experiment up to the point where

their benefits are exactly equal to b(e∗).

Proposition 1 tells us that experimentation levels are strategic substitutes. In equilibrium, the

more an agent experiments, the less do his neighbors. In general, the equilibrium distribution of

experimentation among agents could vary among two extremes. We say a profile e is specialized

when every agent either experiments the maximum amount e∗ or does no experimentation; for

all agents i either ei = 0 or ei = e∗. We call an agent who does the maximum amount, e∗, a

specialist. We say a profile is e is distributed when every agent does some experimentation; for

all agents i, 0 < ei < e∗. Hybrid equilibria fall between these two extremes.

We illustrate Proposition 1 and these different types of equilibria using three basic graphs,

each with four agents. The graphs in Figure 1 - the complete graph, the star, and the circle -

represent canonical social structures described in the sociology and geography literature.5 These

graphs are building blocks for the families of graphs we construct later in the paper.

(a) Complete (b) Star (c) Circle(a) Complete (b) Star (c) Circle

Figure 1. Basic Graphs with Four Agents

Example 1. Specialized and Distributed Equilibria. Consider the complete graph. In all equi-

libria there is a total effort of e∗ and it can be split in any way among the agents. E.g., effort could

be equally distributed, so that each agent experiments 1
4e
∗, or one agent could be a specialist,

as shown in panel (a) Figure 2. Note that in all Figures we suppress the term e∗ for ease of

5We provide citations and discuss these and other structures below in Section IV. The complete graph represents
a densely connected society; all agents know each other. The star graph represents a hierarchical society; only one
agent knows everyone else in the society. The circle gives an intermediate case of an equal society, but where each
agent only knows a subset of the population.
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exposition. On the star, results are quite different. Only specialized profiles are equilibria. Thus

the star graph provides a stark example of social structure leading to specialization. There are

only two Nash equilibria: Either the center is a specialist, or the three agents at the periphery

are specialists, as shown in Figure 2 panel (b). Finally, on the circle, effort can be distributed

among the agents, or concentrated among specialists, as shown in Figure 2 panel (c).
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Figure 2. Equilibria in Basic Graphs with Four Agents

The results in Example 1 generalize to complete graphs, stars, and circles for n agents; the

Appendix provides the respective corrolaries to Proposition 1.

B. The Existence of Nash Equilibria: Specialized Profiles and Independent Sets

Using standard arguments, it is easy to show that for any social structure there exists a Nash

equilibrim profile. Define fi(e) as the best-response of individual i to a profile e and define f

as the collection of these individual best-responses f = (f1, ..., fn). From Proposition 1, fi(e) =

max(e∗ − ēi, 0). This implies that f is a continuous function from the compact convex set {e ∈
Rn : ∀i, 0 ≤ ei ≤ e∗} to itself. By Brouwer’s Fixed Point Theorem, f must have a fixed point.
Hence,

Proposition 2. For any structure g, there exists a profile e that constitutes a Nash equilibrium.

More work is needed to uncover the shape of equilibrium profiles. We show next that for any

structure there exists a specialized equilibrium profile. Our proof is constructive and provides a

method to find all specialized equilibria in general graphs. We use the following notions of graph

theory. An independent set I of a graph g is a set of agents such that no two agents who belong
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to I are linked; i.e., ∀i, j ∈ I such that i 6= j, gij = 0. An independent set is maximal when

it is not a proper subset of any other independent set. Any maximal independent set I has the

property that every agent either belongs to it or is connected to an agent who belongs to it.6 For

any agent i, there exists a maximal independent set I of the graph g such that i belongs to I.7

This notably implies that any graph possesses at least one maximal independent set.

Maximal independent sets are a natural notion in our context. Because efforts are strategic

substitutes, in equilibrium no two specialists can be linked. Hence, specialized equilibria are

characterized by this structural property of a graph:

Proposition 3. A specialized profile is a Nash equilibrium if and only if its set of specialists is

a maximal independent set of the social structure g. Since for every g there exists a maximal

independent set, there always exists a specialized Nash equilibrium.

The next example illustrates the concept of maximal independent sets and the relationship

to specialized equilibria using our three basic graphs.

Example 2. Specialized Equilibria and Maximal Independent Sets. In a complete graph, an

independent set can include at most one agent. Hence, for n = 4 there are four specialized

equilibria, corresponding to each agent. On the star, there are two maximal independent sets:

the agent at the center, and the three agents in the periphery. These two sets correspond to

the two specialized equilibria (and only equilibria) for the star (as seen in Figure 2 (b)). In the

circle, there are two maximal independent sets, each containing two agents on opposite sides of

the circle. Again, these two sets correspond to the specialized equilibria for the circle (as seen in

Figure 2 (c)).

C. Welfare Analysis

Here we explore the societal costs and benefits of different Nash equilibria. To gain a basic

understanding, we take a standard utilitarian approach. We specify social welfare of profile e for

6To see this, suppose not. Let I be a maximal independent set, and let i be an agent who does not belong to
I and is not connected to any agent who belongs to I. Then the set I ∪ {i} is an independent set, and hence I is
not maximal.

7To see this, note that i itself is an independent set. To build a maximal independent set, begin with i and
successively add agents not linked to i, then agents not linked to those agents, etc.
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a graph g as the sum of the payoffs of the agents:

W (e;g) =
X
i∈N

b (ei + ei)− c
X
i∈N

ei

where recall ei is the sum of the search efforts of i’s neighbors.

We first confirm the effect of externalities in our model. We say a profile e is efficient for a

given structure g if and only if there is no other profile e0 such that W (e0;g) > W (e;g). Since

agents do not gain from the benefits of experimentation that accrue to their neighbors, for any

non-empty graph, no Nash equilibrium profile is efficient.

Proposition 4. When at least one pair of agents is linked, no Nash equilibrium profile is efficient.

We therefore take a second-best approach. We ask which equilibrium profiles yield highest

welfare, given a social structure g. An equilibrium profile ee is second-best for a given structure
g if and only if there is no other equilibrium profile ee0 such that W (ee0;g) > W (ee;g). We denote
the welfare associated with a second-best profile as fW (g).

We write welfare to highlight the costs and benefits of different equilibria. Following Proposi-

tion 1, in any equilibrium, each agent has benefits of at least e∗ information. Hence, nb(e∗) is the

minimum aggregate benefits in any equilibrium. In equilibria where some agents do not experi-

ment, they have the benefits of more than e∗ information. The benefits of such information are

equal to
P

j:ej=0
[b(ēj)− b(e∗)] where the summation is over all agents j who do not experiment.

We can therefore express the welfare of an equilibrium e as the sum of three terms:

W (e;g) = nb(e∗) +
X
j:ej=0

[b(ēj)− b(e∗)]− c
X
i

ei. (2)

where the second term is the information premium that can arise from specialization.

In (2), we see a trade-off between information premia and experimentation costs. Distributed

equilibria yield no information premia. Specialization yields information premia but at possibly

higher cost. The resolution of this trade-off depends on the shape of the graph. When the graph is

such that specialists can be sufficiently well-connected, specialization can yield higher aggregate

welfare. The next example illustrates. We then provide a general result.

Example 3. Welfare Analysis. Consider the circle for n = 4. There are two kinds of equi-
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libria - distributed and specialized. In the distributed equilibrium each agent exerts 1
3e
∗ .

There is no information premium and total welfare is 4b(e∗) − 4
3ce

∗. In any specialized equi-

librium, there are two specialists located at opposite sides of the circle, and total welfare is

2b(e∗) + [2b(2e∗)− 2b(e∗)]− 2ce∗. The specialized equilibrium yields an information premium of

2b(2e∗) − 2b(e∗) but entails higher costs. The specialized equilibrium will yield higher overall

welfare when [b(2e∗)− b(e∗)] > 1
3ce

∗.

In general, the welfare comparison across equilibria depends on the value of information above

e∗, embodied in the information premium. Let

σ ≡ b(ne∗)− b(e∗)
c(n− 1)e∗

measure the value of this "extra information." Since the benefit function is increasing and concave,

σ is always between 0 and 1, and higher σ means information above e∗ is more valuble. Our result

shows that when σ is sufficiently high, and agents who experiment are sufficiently well-connected,

the information premium can exceed the costs.

Proposition 5. Consider a graph g and two Nash equilibria e1 and e2 associated with g. There

exists a value of extra information σ̄ < 1 such that for any benefit functions with σ > σ̄,

W (e1;g) > W (e2;g) when
P

i kie
1
i >

P
i kie

2
i .

For instance, when e is a specialized equilibrium with a corresponding set of specialists I, we

have
P

i kiei =
¡P

i∈I ki
¢
e∗. To compare the welfare of this equilibrium to the welfare of another

specialized equilibrium, we can simply count the number of links between specialists and non-

specialists.

D. The Benefits and Losses from New Links

In this section we examine the welfare effects of adding a new link to a graph. A new link has two,

countervailing, effects. A link allows for greater access to new information. But an agent with

greater access to information has less incentive to experiment. We show that this disincentive

can lead to a loss in welfare.

Consider a graph g and two agents i and j who are not linked in g. Denote by g+ij the graph

obtained by connecting i and j in g. We say that the link leads to a “loss in welfare” when the
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second-best level of welfare for graph g + ij is lower than that for g; that is, fW (g) >fW (g + ij).

Let e be a second-best equilibrium profile for the social structure g. There are two cases. First,

in e, either i or j does not experiment. In this case, e is also an equilibrium for g + ij and

hence W (e;g + ij) ≥ W (e;g). Second, in e, both i and j experiment. In this case, e is not

an equilibrium for the structure g + ij. Adding a link between the two destroys the equilibrium

pattern. When experimentation by both agents is required to secure high aggregate benefits, the

new link can lead to a loss in welfare. We summarize these considerations as follows:

Proposition 6. Consider a graph g and two agents i and j not linked in g. A necessary condition

to obtain a loss in welfare from linking i and j is that both agents experiment in all second-best

equilibrium profiles on g.

We illustrate this proposition and the positive and negative effects of a new link in the fol-

lowing example.
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Figure 3. Benefits and Losses from a New Link - Equilibrium Outcomes

Example 4. The Benefits and Losses from a New Link. Proposition 6 tells us to ask whether

the two agents i and j experiment in all second-best patterns. Consider the two stars in Figure

3 panel (a). The Figure shows the unique second-best equilibrium pattern - both centers are

specialists (see Appendix for proof). Connecting a peripheral agent to the center of the other

star, as shown in Figure 3 panel (b), does not disrupt the equilibrium. The link thus increases

welfare. In contrast, connecting the two centers, as shown in Figure 3 panel (c), destroys the

equilibrium pattern and thus can decrease welfare. With the link between the two centers, the
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second-best equilibrium profiles involve the center of one star and peripheral agents of the other

star as specialists. Welfare falls if the increased costs exceed the added information premium:

2ce∗ > b(4e∗)− b(e∗).

E. Equilibrium Selection: The Stability of Nash Equilibria

For any graph, there are potentially many Nash equilibria - ranging from specialized to distrib-

uted.8 To gain some insight into the robustness of different outcomes, we consider a simple notion

of stability based on Nash tâtonnement, see e.g. Fudenberg and Tirole (1996, p.23-25). Formally,

an equilibrium e is stable if there exists a positive number ρ > 0 such that for any vector ε sat-

isfying ∀i, |εi| ≤ ρ and ei + εi ≥ 0 the sequence e(n) defined by e(0) = e+ ε and e(n+1) = f(e(n))

converges to e.

This standard notion has a strong selecting power in our setting. Only specialized equilibria

are stable. Our result relies on the strategic substitability of efforts of linked agents. Consider an

equilibrium where everyone does some experimentation, and decrease the effort of an individual

i by a small amount. His neighbor(s) will adjust by increasing their own efforts. This increase

can lead i to reduce his effort even more. The initial equilibrium is not stable. This process does

not work in specialized equilibria when every agent j who does no experimentation is linked to

two specialists. If we reduce the experimentation of these specialists, agent j will not adjust. He

has access to two sources of information, and a small reduction will not lead him to increase his

own effort.

The following result characterizes stable equilibria on any graph.

Proposition 7. For any social structure g, an equilibrium is stable if and only if it is specialized

and every non specialist is connected to (at least) two specialists.

The following example illustrates.

Example 5. Stable Equilibria. Consider the star graph and the equilibrium where the center

experiments e∗ and peripheral agents do no experimentation. Let ρ > 0 be any small number and

suppose that the center experiments e∗−ρ. In a first step, peripheral agents reply by each exerting
ρ. This leads the center, in a second step, to decrease his experimentation to e∗ − 3ρ. The initial

8We show in section V below that multiplicity of equilibria is robust to alternative specifications of the model.
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perturbation is amplified, and the equilibrium is not stable. In contrast, consider the equilibrium

where all peripheral agents experiment. The only non-specialist (the center) is connected to three

specialists, hence this equilibrium is stable. For instance, if peripheral agents each experiment

e∗ − ρ and ρ is small enough, the center’s best-reply is still to do no experimentation. At the

second step, peripheral agents are back at their initial e∗ play.

All of our results above can modified to describe stable equilibria rather than Nash equilibria.

We can conduct welfare comparisons and analyze the effect of cutting links. We can show,

for example, that even when restricting attention to stable equilibria, adding a link can reduce

welfare.

IV. Specific Models of Social Networks

In this section we build stylized models of different social structures. We build three families

of graphs, where each family represents a different organization of individuals in social and geo-

graphic space. Each family captures key interactions described in sociological and other literature.

We ask how social structures affect experimentation.

A. Overlapping Neighborhoods

We first model an equitable social structure where each individual knows only a subset of the

population, as in the circle above. We allow a person’s set of neighbors to grow, and thereby

capture increasing possibilities of communication across social and geographic space. Consider

the following model: agents are arranged along a circle and numbered from 1 to n.9 Each agent

has k neighbors on the left and k neighbors on the right. We call such a structure an Overlapping

Neighborhoods Graph.

We will see in our analysis our main themes. First, the network structure shapes equilibrium

patterns. Second, specialized equilibria have benefits, and benefits of specialization increase as

society becomes more integrated. But, third, society should not be completely integrated. Adding

links is not always welfare-enhancing.

9The circle (k = 1) provides a standard way to represent local interactions, see e.g. Ellison (1993) and Eshel
et. al. (1998). The family of graphs we consider in this section include the circle and also allows for expanding
neighborhoods.
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We first solve for the set of Nash equilibria for these graphs. We characterize specialized and

distributed equilibria; hybrid equilibria are (loosely speaking) a mixture of the two.

Overlapping Neighborhoods Equilibria In an Overlapping Neighborhood Graph of size k,

(1) A strategy profile e is a distributed equilibrium if and only if there exists a common

divisor of n and 2k+1 - which we denotem - such that the sequence of the firstm effort levels

(e1, ..., em) satisfies
Pm

i=1 ei =
m

2k+1e
∗ and the profile e is a repetition of this sequence every

m agents. In particular, the profile where every agent experiments 1
2k+1e

∗ is an equilibrium

(m = 1). (2) A strategy profile is a specialized equilibrium if and only if the distance

between two consecutive specialists is at least k + 1 and no more than 2k + 1.

The following example illustrates for graphs with n = 12 agents, shown in Figure 4. We show

how the set of equilibria changes when we move from k = 1 to k = 2.

Example 6. Equilibria in Overlapping Neighborhood Model. In panel (a), effort is distributed

among all the agents, and each agent in the same position within each group of 2k + 1 agents

undertakes the same fraction of effort. In panel (b), specialists conduct all the experimentation.

Notice that the specialists are at least k + 1 distance apart. In panel (c), we see a hybrid

equilibrium. Again, the specialists must be at least k + 1 distance away from any other agent

that does positive effort.
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Figure 4: Equilibria in Overlapping Neighborhood Model
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We explore the costs and benefits of specialized equilibria. We first show that specialization

can yield higher welfare. Consider a graph where k < n
2 − 1, so that the graph is not complete.10

In all distributed equilibria, welfare is nb(e∗) − n
2k+1e

∗. In specialized equilibria, the highest

benefits are achieved when there are many specialists. The largest possible number of specialists

is approximately n
k+1 , in which case all non-specialists are connected to two specialists. Welfare

is equal to nb(e∗)+
³
n− n

k+1

´
[b(2e∗)− b(e∗)]− n

k+1ce
∗. The information premium of specialized

equilibria exceeds the additional cost when11

b(2e∗)− b(e∗) >
1

2k + 1
e∗c (5)

With this inequality, we see that integration increases the benefits of specialization:

Integration increases Benefits of Specialization The relative benefits of specialized equi-

libria are increasing in k. If specialized equilibria yield higher welfare for some k0, they also

yield higher welfare for k00 > k0 (given k00 < n
2 − 1).

The intuition is straightforward. As k increases, costs fall in both distributed and specialized equi-

libria. But in specialized equilibria, the information premium increases. We see this phenomenon

in Figure 4 panel (b) above.

Despite these benefits of integration, welfare can fall when a graph becomes complete. When

the graph is just less than complete, e.g., when k = n/2− 2, specialized equilibria involve exactly
two specialists and most people benefit from two sources of information. When the graph is

complete, k = n/2−1, there can be at most one specialist; there is no possibility of an information
premium. Hence, welfare can be higher when the graph is not complete.

Welfare Can Fall when the Graph is Complete Consider k ≤ n/2−2. If the value of extra
information is sufficiently high, then for k0 = n/2−1, welfare of the second-best profile falls.

10 In a complete graph, there is no comparison to make, since all equilibria yield the same level of welfare.
11We show in Appendix that the welfare of specialized equilibrium with |I| specialists is equal to

W (|I|) = nb(e∗) + [(2k + 1)|I|− n][b(2e∗)− b(e∗)]− c|I|e∗

Welfare is linear in the number of specialists and welfare of distributed equilibria equals W ( n
2k+1 ). Therefore, if

b(2e∗) − b(e∗) > 1
2k+1

e∗c, welfare is greatest when |I| is greatest, while if b(2e∗) − b(e∗) < 1
2k+1

e∗c, welfare is
greatest when |I| = n

2k+1
or for distributed equilibria.
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B. Bridges between Communities

Our next model captures a social structure of communities, which are frequently observed patterns

in societies.12 People often learn from those in the same ethnic group, in the same village or in the

same unit within a firm. We ask how links between such communities affects experimentation.

Sociologists [e.g. Granovetter (1973), Burt (1992)] have long argued that links, or bridges, between

communities increase opportunities for learning. In the analysis below we will see such positive

effects. We will uncover, however, a new negative externality. When an agent gains access to a

source of information outside her community, she may reduce her own experimentation.

For simplicity we consider only two communities.13 Divide the population n into two sets, C1

and C2, where agents in each set are all linked to each other: ∀i, j ∈ Ct, t = 1, 2, gij = 1. Some

agents in different sets are also linked: For some i and j, where i ∈ C1 and j ∈ C2, gij = 1.

We call such agents bridge agents and call the link between them a bridge. To maintain the idea

of distinct communities, we assume that at least one agent in each community has no links to

agents in the other community. Let B denote the set of bridges for a graph g, and let β be the

number of bridges. We call this structure a Community/Bridge Graph, and a particular graph is

characterized by the number of its bridges β.

In our analysis we will again see the themes of the paper. First, the social structure shapes

the set of equilibrium patterns. Bridge agents, who have more connections than other agents,

experiment less on average than other agents. Second, there are benefits of specialization. When

bridge agents are specialists, their efforts benefit many people. Finally, additional links between

a bridge agent and the other community can reduce the bridge agent’s incentive to experiment,

and overall welfare can fall.

We first characterize the Nash equilibrium patterns for this social structure. We are concerned,

in particular, how the number of bridges β affects the set of equilibria. We find that the greater

the number of bridges, the greater the equilibrium efforts of non-bridge agents. Because bridge

agents have access to information in the other community, in equilibrium at least one of each

pair of bridge agents does no experimentation. Hence, the greater the number of bridges, across

12Mapping the cohesive subgroups present in real networks is a main issue of social network analysis. Sociologists
use a variety of concepts and techniques to address this task, see e.g., chapter 7 in Wasserman and Faust (1994)
and Girvan and Newman (2002) for recent methodological advances.
13Bala and Goyal (2001) look at the same type of structure in their study of conformism and diversity.
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equilibria the average effort of non-bridge agents rises. We summarize these findings below, then

illustrate the equilibria in Example 7.

Equilibria for Community-Bridge Graphs For a Community-Bridge graph with β bridges,

the Nash equilibria are the profiles such that: (1) total effort exerted within each

community is equal to e∗, and (2) for any two agents i and j connected by a bridge,

at least one of agents i and j does no experimentation. As a consequence, across

equilibria the average effort cost of non-bridge agents is higher for social structures

with greater β.

Example 7. Equilibrium Patterns for Community-Bridge Graphs. Consider two communities

of four agents each, pictured in Figure 5. In panel (a), there are no bridges (β = 0), and any

distribution of effort e∗ in each community is a Nash equilibrium. E.g., equal distribution, 14e
∗

for each agent, is a Nash equilibrium. In panel (b), there is one bridge (β = 1). There is no

equilibrium in which both bridge agents do strictly positive effort. Hence, as shown in the Figure,

e∗ is distributed among the non-bridge agents in one community, and total effort of non-bridge

agents increases. In panel (c), where β = 2, there is another pair of agents for which it is not

possible for them both to do positive effort. Hence, effort by non-bridge agents increases again.
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Figure 5. Equilibria in Communities Connected by Bridges

This result counters sociological wisdom concerning bridges, which are a central concept of

the literature on information transmission. Links between communities, it is argued, allows
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information to spread across social boundaries [Granovetter (1973), Burt (1992), Watts and

Strogatz (1998)]. Our result highlights a different aspect of bridges. When experimentation is

costly and effort is endogenous, bridge agents experiment less, which increases the burden on

other agents. Thus, our analysis points towards a more ambiguous vision of bridges.

[To reconcile our result with the sociological wisdom, we also consider the set of equilibria

when information can pass from a member of a community, through a bridge, to a member of

another community. When information diffuses two steps in the graph, we still see that bridge

agents can reduce their effort. There are two types of Nash equilibria [see Appendix]: (1) bridge

agents exert a total effort of e∗ and other agents do no experimentation; (2) bridge agent do

no experimentation and in each community, non-bridge agents exert a total effort of e∗. With

two step diffusion, bridge agents either provide information to agents in both communities, or

do no effort themselves and information just passes through them to the other community (as

emphasized in the sociology literature). With two-step transmission, bridge agents can take even

more advantage of their position to reduce their effort to zero. We now return to single-step

diffusion.]

We consider the welfare of different equilibrium profiles. Here we see a tension: while bridge

agents have less incentive to experiment than other agents, their effort is important for social

welfare. If i is a bridge agent, we denote by NB
i the set of neighbors of i in the other community.

The welfare of an equilibrium profile e for a social structure g with a set of B bridges is then

W (e,g)=nb(e∗) +

 X
i∈B:ei=0

b(e∗ +
X
j∈NB

i

ej)− b(e∗)

− 2ce∗ (6)

where the second term is the information premium earned by those agents linked to bridge agents

in the other community who experiment. It follows directly from this expression that the second-

best equilibrium profile exclusively involves experimentation by bridge agents in one or, often,

both communities:

Search Should be Concentrated among Bridge Agents Consider a graph with β ≥ 1 bridges.
In second best profiles, bridge agents in one community exert all the effort. In the other

community, aggregate effort exerted by bridge agents is either 0 or e∗.

We can see this result in the graphs in Figure 6. In all of the pictured equilibria, bridge
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agents experiment. These equilibria yield higher welfare than equilibria in which no bridge agents

experiment. In such equilibria, it is as if the communities are not linked by bridges, and each

agent earns only b(e∗) information.

Finally, we see how, despite the additional possibilities for learning, adding a new bridge can

reduce overall welfare. We apply Proposition 6. We call a bridge between two agents a separate

bridge if and only if neither of the two agents is linked to another agent in the other community.

We find that adding separate bridges between communities always increases welfare. But the same

is not true for non-separate bridges, which can reduce welfare. An agent who had an incentive to

experiment when connected to a single agent in the other community may not experiment when

linked to two. We illustrate the positive and negative effects of new bridges in Example 8.

Example 8. The Effect of New Bridges on Welfare. Consider two communities of four agents

each. In each of four panels in Figure 6, we illustrate a second best profile for β = 0, 1, 2, 3 separate

bridges. The total costs are the same in each case, and the information premium increases from

0 to b(2e∗)− b(e∗) to 2 [b(2e∗)− b(e∗)] to
£
b(2e∗) + 2b(32e

∗)− 3b(e∗)¤ .
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Figure 6. Second-Best Equilibria with Separate Bridges

We next show how a new non-separate bridge can decrease welfare. Consider the two communities

with four agents each in Figure 7. Panel (a) shows a social structure with three bridge agents

in each community. In any second-best equilibrium for this social structure, the agents with two

bridge neighbors are specialists. Hence, applying Proposition 6, a link between them can reduce

welfare. Indeed, we see in panel (b) when this link is added, in second-best equilibria only one of

them is a specialist. Welfare falls. [Without the link, the information premium in a second-best

equilibrium is 4[b(2e∗)− b(e∗)], and with the link it is 3[b(2e∗)− b(e∗)]].
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Figure 7. Negative Effect of New Non-Separate Bridge

C. Core-Periphery Graphs

We next construct and analyze graphs that represent core-periphery social structures.14 Such

structures consist of a core - a group of densely connected agents - and a periphery - a group of

agents with connections only to the core. Research suggests core-periphery patterns characterize

many social and economic interactions. In economic geography, manufacturing activity is often

concentrated in one or few regions - the core - while agricultural activity is dispersed in the

periphery and supplies the core [see e.g. Krugman (1991)]. Examples of core-periphery networks

include the interlocking directorates of firms in the United States [Mintz and Shwartz (1981)],

international trade [Snyder and Kick (1979)], and the social organization of academic research

[Mullins et al. (1977)].

We model core-periphery structures as follows. We divide the population into two sets, the

core, C, and the periphery, P , such that all agents in the core are linked to each other and

no agents in the periphery are linked to each other; i.e., ∀i, j ∈ C, gij = 1 and ∀i, j ∈ P s.t.

i 6= j, gij = 0. Core agents may or may not have links to peripheral agents. We call core agents

that have one or more links to peripheral agents p-core agents. To make the analysis interesting,

we assume there is at least one p-core agent, so that at least one core agent has a link to the

periphery. To simplify the exposition, throughout the analysis below we assume that no p-core

agents have the same set of neighbors.15

Each core-periphery graph is distinguished by two measures which we derive to capture the

14Bramoullé (2002a, 2002b) develops and analyzes graphs with a core-periphery structure in a study of anti-
coordination games.
15We have solved for all the Nash equilibrium profiles of core-periphery graphs, including those that do not satisfy

this assumption. Moreover, the welfare results below hold whether or not this assumption is satisfied.
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extent to which specific core agents are critical to agents in the periphery. For a p-core agent i,

consider his neighbors in the periphery, Ni ∩P . Let ri denote the number of links between these
neighbors and core agents other than himself:

ri =
X

j∈Ni∩P
(kj − 1)

We consider the minimum and maximum values for a graph g: For the set of p-core agents, let

r = mini{ri} and r = maxi{ri}. When r is small, for some agents in the periphery a single core

agent is their sole source of information. When r is also small, this is true for most peripheral

agents.

Our analysis explores how the structure shapes equilibrium patterns, the importance of spe-

cialization, and the effect of new links.

In any core-periphery graph, we find there are only two shapes of Nash equilibria, reflecting

the division between the core and periphery. Both involve specialists. In one type, one p-core

agent is a specialist. His information spreads to his neighbors in the periphery and to other core

agents. In the second type, all peripheral agents are specialists. The latter outcome is consistent

with the argument that major innovations often take place in the periphery of social systems.16

We show the general result then illustrate in an Example.

Equilibria in Core-Periphery Graphs On any core-periphery graph, there are two types of

Nash equilibria: (1) No p-core agents experiments, each peripheral agent exerts e∗, and the

other core agents collectively exert a total effort of e∗. (2) One p-core agent is a specialist

and experiments e∗, all his neighbors (the rest of core and his links in the periphery) do not

experiment, and the remaining peripheral agents each exert e∗.17

Example 9. Equilibrium Patterns in Core-Periphery Graphs. Consider the graphs in Figure 8.

In the graphs on the left, three of the four core agents are p-core agents.18 In the graphs on the

16See Kuhn (1963) and Chubin (1976) on scientific innovations, and Mansfiel (1968), Jewkes et al. (1959), and
Hamberg (1963) on industrial innovations.
17When all core agents have links to the periphery and one of them has exactly one peripheral neighbor, a slight

variation on the second equilibrium exists. If i is a core agent and j his unique peripheral neighbor, the profile
where ei+ej = e∗, all the other core agents do no search, and their peripheral neighbors search e∗ is an equilibrium.
18For ease of exposition the graphs in the Figure violate our assumption that no two core agents have the same

set of neighbors. All of welfare results are the same whether or not this assumption is satisfied.
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right, all core agents have links to the periphery. Panel (a) shows equilibria where a p-core agent

is a specialist. Panel (b) depicts the equilibria where all peripheral agents experiment. Notice the

difference in panel (b) between the equilibria in the graph on the left and right: On the left, the

core agent with no links to the periphery experiments, while on the right, all core agents have

links to the periphery and do no experimentation.
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Figure 8. Equilibria in Core-Periphery Graphs

While there are two types of equilibria, our welfare analysis indicates that social welfare can

be higher when p-core agents specialize. The pattern of links between the core and periphery, as

captured in our measures r and r, determines which of the two types of equilibria is second-best.

We start with the simplest case of sparse links between the core and periphery. Suppose that

any peripheral agent who has a link to the core has no other link; i.e., r = 0.19 In this case it is

second best for an agent in the core to specialize.

Sparse Links between Core and Periphery Consider any core-periphery graph such that

r = 0. In every second-best profile, a p-core agent is a specialist and this agent is among

those with the most links to the periphery.

19Recall we have assumed that at least one agent in the periphery has a link to an agent in the core.
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This case, r = 0, is quite similar to the star graph. Information generated in the periphery

does not benefit many agents in the core. The information premium is always smaller than the

additional costs, and therefore it is always better in terms of welfare for peripheral agents to

experiment less.

Now suppose there are denser links between the core and periphery. Let at least one peripheral

agent have more than one neighbor in the core; that is, r ≥ 1. In this case, it is possible that
equilibria where all peripheral agents experiment is second-best. As we saw in section III above,

second-best profiles generally trade-off effort costs and information premia. Here, p-core agents

might receive an information premium, since they have access to information in the core as well

as in the periphery. When r is high, many p-core agents’ peripheral neighbors are well-connected

to the core, and research by these peripheral agents brings more informational benefits. Hence,

social welfare can be higher when experimentation is concentrated in the periphery. To prove this

result, we apply the techniques of Proposition 5. For each type of equilibrium, we identify the

maximal independent set of agents that constitutes the set of specialists. We then count the links

between agents in the set and agents outside the set. We then compare these numbers across

equilibria, and the comparison ultimately depends on the value of r.

Dense Links between Core and Periphery Consider any core-periphery graph where r ≥
1 : (1) If all agents in the core are linked to agents in the periphery and if r < |C| − 1,
then there exists a value of extra information σ < 1 such that for all σ ≥ σ, the second

best equilibrium involves specialization by a p-core agent. If r > |C|− 1 then there exists
a value of extra information σ0 < 1 such that for all σ ≥ σ0 in the second best equilibrium

all peripheral agents experiment. (2) If there is at least one core agent with no links to the

periphery and if r = 0, then there exists a value of extra information σ00 < 1 such that for

all σ ≥ σ00 the second best equilibrium involves specialization by a p-core agent. If r ≥ 1,
there is a value of extra information σ000 < 1 such that for all σ ≥ σ000 such that peripheral

experimentation is second best.

We illustrate in the following example.

Example 10. Core versus Periphery Experimentation. Consider the graphs in Figure 8 and first

compute the coefficients ri. We obtain ri = 1 for the core agents with a unique peripheral neighbor
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and ri = 0 for the core agents with two peripheral neighbors. Thus, r = 0 and our result above

applies. In both graphs, if the value of extra information is sufficiently high, in the second-best

profile a core agent with two neighbors in the periphery is a specialist. Calculations confirm this

result. For instance, consider the graph on the left in panel (a). The welfare of this equilibrium

is 5b(e∗) + 2b(2e∗)− 2ce∗. The equilibrium where a different p-core agent is a specialist yields a

welfare of 6b(e∗)+b(3e∗)−3ce∗, which is always lower. The equilibrium where all peripheral agents
are specialists, shown on the left in panel (b), yields a welfare of 4b(e∗) + 2b(2e∗)+ b(3e∗)− 4ce∗.
The difference in welfare between this equilibrium and the best equilibrium with p-core agent

experimentation is b(3e∗)− b(e∗)− 2ce∗, which is always negative.

Finally, we consider the impact of adding links to a core-periphery structure. We apply Propo-

sition 6: a link between an agent i and an agent j will always increase welfare unless agents i and

j experiment in every second-best profile for the original graph. One important case is when a

core agent is a sole source of information to a set of peripheral agents. A link between this core

agent and an agent in the periphery who provides information to the core can reduce welfare.

The example below illustrates.
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Figure 9. Effect of New Link Between the Core and Periphery

Example 11. Effect of a New Link between the Core and the Periphery. Consider the graph

in panel (a) Figure 9. We showed in the previous example that the equilibrium where a p-core

agent with two peripheral neighbors is a specialist is always second-best and yields a welfare of

W = 5b(e∗) + 2b(2e∗) − 2ce∗. As described above, linking this agent with the third peripheral
agent might lower social welfare. To see this, examine the possible equilibria on the new graph in

panel (b): (1) In the equilibrium shown in the Figure, the core agent with three neighbors in the
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periphery is a specialist and W1 = 7b(e
∗)− ce∗; (2) Another equilibrium would involve a different

p-core as specialist, yielding welfare W2 = 6b(e
∗) + b(3e∗)− 3ce∗, which is always lower than W1;

(3) The last possible equilibrium involves all peripheral agents experimenting, yielding welfare

W3 = 4b(e
∗) + 2b(2e∗) + b(4e∗) − 4ce∗. Therefore, the second-best level of welfare falls with the

new link if W > W1 and W > W3. That is, if 12 [b(4e
∗)− b(e∗)] < ce∗ < 2[b(2e∗)− b(e∗)].

V. Robustness of Results

In this section, we discuss the robustness of our findings to changes in the model’s specifica-

tions. We have explored several different directions including convex costs, heterogeneity, and

information diffusion.

Convex costs.

First, suppose that costs of experimentation c(ei) are convex instead of linear. Clearly, convex

costs drive the outcome towards effort sharing. For example, on the complete graph, there is now a

unique equilibrium where all individuals experiment the same amount. Despite this effect, we see

that multiple specialized equilibria still emerge on certain incomplete graphs like the circle. More

generally, Proposition 3 extends as follows. There usually exists a positive integer s such that a

specialized profile is a Nash equilibrium if and only if its set of specialists is a maximal independent

set and each non specialist is connected to at least s specialists. This result implies that multiple

specialized equilibria emerge on infinitely many graphs. In terms of welfare, specialization still

generates information premia. Despite the convexity of the cost function, these benefits can be

sufficiently high so that specialization yields higher welfare. This strongly confirms our findings

that networks may foster specialization and that specialization may have welfare benefits.

Heterogeneity.

Next, suppose that agents are heterogeneous in their benefits from information bi(ei + ēi)

and costs of experimentation ciei.20 We can use many of our techniques to analyze this case.

Equilibrium outcomes can be represented by an idiosyncratic threshold effort level e∗i such that

in equilibrium, ei = 0 when ēi ≥ e∗i and ei = e∗i − ēi otherwise. Individuals with higher benefits

20Heterogeneity arises from a simple model of impure altruism. Suppose individual i obtains a ‘warm glow’
[Andreoni (1990)] of mei for each neighbor that benefits from her experimentation ei. This gain effectively lowers
i’s marginal cost of c − kim. Individuals with more links earn greater pleasure from generating new information
and, hence, have lower effective costs of experimentation.
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or lower costs have higher thresholds. On the complete graph, there is a (generically) unique

equilibrium where the individual with highest threshold does all the experimentation. Hetero-

geneity leads to specialization. This is clearly reinforced on incomplete networks. We can adapt

the proof of Proposition 3 to show that on any graph there exists a specialized equilibrium where

the individual with highest threshold experiments. Furthermore, multiple specialized equilibria

emerge on certain incomplete graphs. Which equilibrium yields higher welfare is, again, deter-

mined by a trade-off between information premium and effort costs. This shows the robustness

of our insights.

Longer information diffusion and decay.

Finally, individuals could learn experimental results from further away in a network. For

instance, suppose that experimentation results diffuse k steps without decay. Our setting can

easily be adapted to this case. Define the graph g(k) as follows: g(k)ij = 1 if i and j are less than

k-step apart in g, and 0 otherwise. Under the assumption that agents can discern redundant

information, k-step diffusion on the graph g is formally equivalent to 1-step diffusion on g(k)

and our analysis directly extends. We can also study comparative statics with respect to k. For

instance since g(k) has more links than g, our results on the addition of new links apply and the

highest level of welfare attainable on g(k) might in fact be lower than on g. Indeed, this outcome

is precisely our result in the overlappings neighborhoods model.

Information decay would complicate the analysis. If experimental results by one agent even-

tually reaches all other agents in society, we suspect that specialization might not emerge in

equilibrium. Heterogeneity in efforts caused by strategic substitutability and network asymme-

tries, however, will certainly persist. The assumption that information travels infinitely far in a

network, however, seems quite unrealistic. Friedkin’s (1983) study of communication networks

finds just the opposite; information diffuses only one or two steps. In the more sensible case where

information diffuses a few steps with decay specialization is still guaranteed on certain incomplete

graphs.

VI. Conclusion

This paper introduces a network model of strategic experimentation. We explore how the social

or geographic links affects the pattern of experimentation and have three main findings.
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First, social networks induce specialization and inequalities. We find that on any network

there exist specialized equilibria where some agents experiment and others free-ride. Certain

structures, like the star, admit only specialized equilibria. An agent’s position in the graph affects

his equilibrium action: agents who have a more peripheral position, or who are isolated in their

own community, exert relatively more effort, on average, in equilibrium. The study of alternative

specifications of the model, and notably of convex costs, confirms the robustness of these effects.

Specialization and inequality in experimentation emerge from the interplay between strategic

substitutability and networks. And due to strategic substitutability, specialized equilibria alone

can be stable.

Second, we show that inequality in experimentation can be socially desirable. Strategic sub-

stitutability limits the total level of experimentation attainable in equilibrium. Specialization can

then be welfare-enhancing. Two conditions must be met: the value of extra information must

be sufficiently high and specialists are linked to sufficiently many people. These conditions point

to a conflict between individual behavior and aggregate social welfare when agents have different

numbers of neighbors - as in the communities-bridges and core-periphery graphs. Agents who

have more links exert comparatively less effort in many equilibria. But second-best profiles in-

volve experimentation by these well-connected agents, whose experimentation would lead to the

highest social benefits.

Third, we show that new links can lower social welfare. In general, there are two effects of

new links. A link allows more transmission of information, but greater access to information

reduces individual incentives to experiment. We find this negative effect can dominate and have

aggregate and distributional consequences. For instance, contrary to the prevailing wisdom, we

show that bridges between communities can be detrimental to others. Agents who gain outside

sources of information can reduce their own efforts. As for aggregate effects, when two agents are

in critical positions in a network, a link between them can lower their experimentation incentives

and reduce overall welfare.

Descriptive and sociological studies suggest that social structures affect experimentation and

information diffusion.21 Our analysis thus points to potentially important determinants of exper-

21See, for example, Gladwell’s (2000) descriptive account. People who have extensive knowledge of the mar-
ketplace are usually quite peripheral. Rogers (1995) reports similar findings when contrasting the social position
of “innovators,” who typically are the first to experiment, to that of “early adopters,” who rely on innovators’
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imentation and innovation. For instance, we expect individuals who have active social neighbors

to have high benefits but experiment less. We also expect individuals who have prominent social

positions to bear less of the experimentation costs, and instead to rely on others’ efforts. This

analysis could potentially guide empirical research. For instance in the study of new crop adoption

in developing countries, one could combine the investigation of strategic effects as in Foster and

Rosenzweig (1995) with network data of the type collected in Conley and Udry (2002).

Future theoretical research could investigate network formation and how information trans-

mission feeds back into the evolution of social links. In our analysis, we look at existing networks;

channels of information transmission are already in place when the need for new information

appears. Thus, our setting is probably more appropriate to understand short-run patterns of

experimentation and information diffusion within established networks. Looking at long-term

issues and network evolution provides a promising avenue for future research.

experiences before making their decisions: “early adopters are a more integrated part of the local social system
than are innovators,” (p. 263).
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APPENDIX
Corollaries mentioned in Example 1.

Corollary 1. When the graph g is complete, a profile e is a Nash equilibrium if and only ifP
i ei = e∗.

Proof: Let i be an agent who exerts positive effort ei > 0. Then, ei+ ēi = e∗. Since i is connected
to all other individuals, it means that ēi =

P
j 6=i ej , and

P
j ej = e∗. Reciprocally, these profiles

are obviously Nash equilibria. ¥

Corollary 2. On the star graph, a profile e is a Nash equilibrium if and only if: either (1) the
agent in the center plays e∗ and all the other agents play 0; or (2) the agent in the center plays
0 and all the other agents play e∗.

Proof: The two profiles are clearly Nash equilibria. We show that they are the only ones.
Suppose the center agent i exerts a effort level 0 < e0 < e∗. In equilibrium, each of his neighbor’s
must experiment e∗ − e0. Suppose now each of agent i’s neighbors experiment e∗ − e0. Agent i’s
information will then equal (n−1)(e∗−e0)+e0 which is strictly greater than e∗ for n > 2. Hence,
agent i would have an incentive to deviate and lower her effort. ¥

The Corollary for the circle is found in Section IV below.
Proof of Proposition 7.

Our proof relies on the following lemma.

Lemma 1. If e ≤ e0, then f ◦ f(e) ≤ f ◦ f(e0).

Proof: Suppose that ∀i, ei ≤ e0i. Then, e
∗ − ēi ≥ e∗ − ē0i, hence max(e

∗ − ēi, 0) ≥ max(e∗ − ē0i, 0)
and f(e) ≥ f(e0). Applying f again to this inequality yields the result. ¥

Consider first an equilibrium that is not purely specialized and denote by I = {i : 0 < ei <
e∗}. Let ρ > 0 be a small number and define a perturbation ε as follows: ∀i ∈ I, εi = ρ and
∀i /∈ I, εi = 0. Introduce the matrix h such that hij = gij if i 6= j and hii = 0. If ρ is small
enough, we have ε̄i ≤ ei, hence f(e+ε) = e−hε where the product hε denotes the usual product
of the matrix h by the vector ε. Then, f ◦ f(e+ ε) = e + h2ε. Since (h2)ii = ki ≥ 1, we obtain
(h2ε)i ≥ ρ = εi and h2ε ≥ ε. Therefore, f ◦ f(e+ ε) ≥ e+ ε. By applying the lemma we can see
that for any finite number k, f (2k)(e+ ε) ≥ e+ ε, which is strictly greater than e. Therefore, the
sequence of best-responses never converges back to e and the equilibrium is not stable.

Consider next a specialized equilibrium e such that i is a non specialist who is connected to
a unique specialist j. Let ρ > 0 be a small number and define a perturbation ε as follows: εi = ρ

and εl = 0 if l 6= i. Then, clearly, e(1)l = el for any l except j and e
(1)
j = e∗−ρ. Next, e(2)l = el for

any l except for neighbors of j whose only specialist neighbor is j. These agents, which include i,
all play ρ. This means that f ◦ f(e+ ε) ≥ e+ ε and we can apply the same argument as above,
hence this equilibrium is not stable.

Finally, let us prove that specialized equilibria in which every non-specialist is connected to
(at least) two specialists are stable. Take e such an equilibrium, let I be the set of specialists in
e, and let δ = 1

n2 e
∗. Consider any perturbation ε such that ∀i, |εi| < δ and εi + ei ≥ 0. First,

determine e(1). For i /∈ I, ē(0)i = ēi + ε̄i = |Ni ∩ I|e∗ + ε̄i. Since |ε̄i| ≤ nδ ≤ e∗, this implies that
ē
(0)
i ≥ e∗, hence e(1)i = 0. Despite the perturbation, non-specialists still do no effort. For i ∈ I,

ē
(0)
i = ε̄i, hence e

(1)
i = e∗ − ε̄i. Next, determine e(2). For i /∈ I, ē(1)i = |Ni ∩ I|e∗ −

P
j∈Ni∩I ε̄j .
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Since |Pj∈Ni∩I ε̄j | ≤ n2δ ≤ e∗, we obtain again that e(2)i = 0. Finally, for i /∈ I, ē(1)i = 0 hence

e
(2)
i = e∗. We showed that f ◦ f(e + ε) = e, hence f (k)(e + ε) = e for all k ≥ 2, hence the
equilibrium is stable.
Proof of Proposition 4.

Let e be an equilibrium and i an agent such that ei > 0 and for some j 6= i, gij = 1. From
Proposition 1, we know that ei + ei = e∗, which implies b0(ei + ei) = c. Examine the partial
derivative of the welfare function with respect to ei.

∂W

∂ei
=

X
j∈i∪Ni

b0(
X

k∈j∪Nj

ek)− c =
X
j∈Ni

b0(
X

k∈j∪Nj

ek)

When b is strictly concave, this derivation implies ∂W
∂ei

> 0, and welfare could be strictly improved
by increasing ei. Agents do not internalize the benefits their efforts have for others.
Proof of Proposition 5

Consider an equilibrium e and i such that ei = 0. Since b is increasing and concave, we have
σc(ēi − e∗) ≤ b(ēi)− b(e∗) ≤ c(ēi − e∗). This means that

σc[
X
i:ei=0

(ēi − e∗)−
X
i

ei] + (1− σ)c
X
i

ei ≤W (e,g)− nb(e∗) ≤ c[
X
i:ei=0

(ēi − e∗)−
X
i

ei]

In addition,
P

i:ei=0
(ēi − e∗) =

P
i∈N (ei + ēi)− ne∗. By switching the double summation, we

then obtain
P

i∈N(ei + ēi) =
P

i

P
j gijej =

P
j

P
i gijej =

P
j(kj + 1)ej . Substituting yields

σc
X
j

kjej + (1− σ)c
X
i

ei ≤W (e,g)− n[b(e∗)− ce∗] ≤ c
X
j

kjej

Hence, as σ tends to 1, W (e, G)−n[b(e∗)−ce∗] tends to cPj kjej . (We consider benefit functions
for which b0(e∗) = c so that equilibria are not affected by changes in σ). Therefore, there exists
a threshold σ̄ < 1 such that if σ > σ̄,

P
j kje

1
j >

P
j kje

2
j implies that W (e1,g) > W (e2,g).

Calculations for example 4.
For a star with n agents, the welfare of the equilibrium where the center experiments is

W 1 = nb(e∗)−ce∗ while the welfare of the equilibrium where peripheral agents effort isW 2 = (n−
1)[b(e∗)−ce∗]+b((n−1)e∗). Their difference is equal toW 1−W 2 = (n−2)ce∗−[b((n−1)e∗)−b(e∗)]
which is positive.
Equilibria on overlapping neighborhood graphs.

Consider first a distributed equilibrium such that for every i, 0 < ei < e∗. It follows from
Proposition 1 that for every i,

Pi+k
j=i−k ej = e∗. Subtracting the equation for i and the equation

for i + 1 yields ei−k − ei+k+1 = 0. Thus for every i, ei = ei+2k+1. Recall that when the indice
becomes greater than n, one simply substracts n from it. This shows that, more generally, ei = ej
as soon as there exists two integers t, t0 such that i− j = (2k+1)t−nt0. Define m as the greatest
common divisor of 2k + 1 and n. A standard result of arithmetics is that there always exist two
integers t and t0 such that m = (2k + 1)t − nt0. This means that for every i, ei = ei+m and the
whole effort profile is generated by the first m individual efforts e1, ..., em.

Consider, next, a specialized equilibrium. Let I be the set of agents that exert e∗. This set
must be non-empty (otherwise, some agent would increase his effort). By Proposition 1, in a Nash
equilibrium, no agent j ∈ I can be linked to any other agent in I. Hence, the distance between
each agent j ∈ I must be at least k + 1. The distance can also not be more than 2k + 1. If it
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were, then the agent k+ 1 away would be learning no information from her neighbors and hence
would have an incentive to deviate and exert positive effort. It is evident that these strategies
constitute a Nash equilibrium.
Welfare analysis on overlapping neighborhoods graphs.

Let e be an equilibrium. We know that
P

i∈N(ei +
P

j∈Ni
ej) =

P
j∈N(kj +1)ej and also, by

Proposition 1, that ∀i, ei +
P

j∈Ni
ej ≥ e∗. Since on overlapping neighborhoods, ∀j, kj = 2k, we

have
P

j∈N ej ≥ n
2k+1e

∗ which shows that distributed equilibria yield lowest effort costs.
Consider next a specialized equilibrium with |I| specialists. No agent can be connected to

three specialists, since in this graph, it would mean that two specialists are linked. Denote by n1
the number of agents connected to a single specialist and by n2 the number of agents connected
to two specialists. With these notations, welfare can be expressed as W = nb(e∗) + n2[b(2e

∗) −
b(e∗)] − c|I|e∗. We then compute n2. Clearly, |I| + n1 + n2 = n. Next, we count the number
of links between specialists and non-specialists. On the one hand, it is equal to

P
i∈I ki = 2k|I|

since each specialist has ki links with non-specialists. On the other hand, it is equal to n1 + 2n2.
Thus, n1 + 2n2 = 2k|I|. Hence, n2 = (2k + 1)|I| − n. Welfare only depends on the number of
specialists in the specialized equilibrium.
Equilibria on bridge/communities graphs.

Our proof relies on the following lemma.

Lemma 2. Let e be an equilibrium for a graph g. Consider two agents i and j such that i∪Ni ⊂
j ∪Nj . If ej > 0, then for every agent k 6= i who belongs to Nj\Ni, ek = 0.

Proof: When ej > 0, by Proposition 1, ej +
P

k∈Nj
ek = e∗. The information obtained by j is

equal to the sum of the information obtained by i and the information produced by the neighbors
of j who do not communicate with i

ej +
X
k∈Nj

ek = ei +
X
k∈Ni

ek +
X

k 6=i∈Nj\Ni

ek

The Nash condition on i implies that ei+
P

k∈Ni
ek ≥ e∗ which means that ∀k 6= i ∈ Nj\Ni, ek = 0

and ei +
P

k∈Ni
ek = e∗. ¥

Now, consider a bridge connecting i and j and denote by i0 an agent in i’s community who is
not a bridge agent. Since i0∪Ni0 ⊂ i∪Ni, we can apply Lemma 2. Either ei = 0 or all the agents
to whom i is connected who are not neighbors of i0 do no effort. This means that if ei > 0, all
the bridge agents in the other community who are connected to i do no effort. Reciprocally, the
profiles described in the Proposition are evidently Nash equilibria.
Equilibria for two-step diffusion.

Bridge agents are connected to every agent in the graph g2. Suppose that one bridge agent
j exerts strictly positive effort ej > 0 and consider i1 a non-bridge agent in one community and
i2 a non-bridge agent in the other community. Since i1 ∪ Ni1 ⊂ j ∪ Nj and i2 ∪ Ni2 ⊂ j ∪ Nj ,
we can apply Lemma 2 to i1and j and i2 and j. For every s belonging to Nj\Ni1 or to Nj\Ni2,
es = 0, which implies that all non-bridge agents do no effort. Therefore, bridge agents must exert
a total effort of e∗, and any such profile is an equilibrium. In contrast, if bridge agent do no effort,
non-bridge agents in each community do not have access to information outside their community,
hence the Nash equilibria are the profiles such that non-bridge agents in each community exert a
total effort of e∗.
Welfare analysis on bridge-community graphs.
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Consider an equilibrium profile e. If ∀i ∈ B, ei = 0, the information premium equals zero,
hence welfare is strictly greater when some bridge agent exerts positive effort. Hence, in any
second-best profile ẽ there exists an agent i ∈ B such that ẽi > 0. Now suppose that in ẽ some
effort is done by non-bridge agents in i’s community. That is, ∃j /∈ B such that gij = 1 and ej > 0.
Consider the profile e0 defined as follows: e0j = 0, e

0
i = ei + ej and e0k = ek for every k 6= i, j. The

effort done by j in ẽ is transferred upon i in e0. Then, e0 is an equilibrium profile in which bridge
neighbors of i receive greater informational benefits than in ẽ. Thus W (e0;g) > W (ẽ;g) which
is contradictory. This shows that in second-best profiles, as soon as some bridge agents do some
effort in one community, they do all the effort.
Effect of separate bridges

We describe the shape of second-best profiles when bridges are separate. Specifically, we show
that an equilibrium yields highest welfare when: If β is even, β/2 agents in each community effort
the same amount; If β is odd, (β − 1)/2 agents in one community effort equally, and the same
holds for (β+1)/2 agents in the other community. When β = 1, the result is a direct consequence
of the previous result. Suppose that β ≥ 2. Our proof proceeds in two steps: (1) We determine
the equilibria that yield greatest welfare, conditional on the hypothesis that t bridge agents in
one community and β− t bridge agents in the other community exert positive effort; and (2) We
use the previous calculations to determine the optimal t. First, suppose that t bridge agents in
one community exert a total effort of e∗. These agents are denoted by 1, ..., t. How should we
allocate the effort to maximize the information premium received by their neighbors in the other
community? This optimization problem can be expressed as follows:

max
e1+...+et=e∗

tX
i=1

b(ei + e∗)− b(e∗)

Since b is concave, the solution to this problem is standard and involves equal sharing of effort.
That is, an optimal solution is such that ∀i, ei = 1

t e
∗. Next, compute the optimal t. For clarity,

denote by π(t) = b((1 + 1
t )e

∗) − b(e∗). The greatest welfare in equilibrium with t is W (t, β) =
tπ(t)+ (β− t)π(β− t) if 0 < t < β and W (0, β) = βπ(β). This last case can easily be eliminated.
Since b is increasing, we have π(β) < π(β − 1) and π(β) < π(1), which means that βπ(β) <
(β − 1)π(β − 1) + π(1) = W (1, β). Therefore, in any second-best profile, 0 < t < β and the
optimization problem reduces to

max
t∈{1,2,...,β−1}

tπ(t) + (β − t)π(β − t)

One can check that the function t 7→ tπ(t) is increasing and concave,22 which implies that the
optimal t is an integer closest to β/2.
Effect of non-separate bridges

We characterize the second-best profiles for the graph of Example 8 (see Figure 7). First,
consider the graph without the link. The profile depicted in figure 7 yields an information
premium of 4[b(2e∗)− b(e∗)]. We know that effort is exclusively done by bridge agents in either
one community, or both communities. When bridge agents in a single community effort, the
three bridge agents in the other community benefit from their information, hence the information
premium cannot be greater than 3[b(2e∗)− b(e∗)] and it is not second-best. When a bridge agent

22The first derivative equals b((1 + 1
t )e

∗)− b(e∗)− 1
t e
∗b0((1 + 1

t )e
∗) and is positive because b is concave, while

the second derivative equals 1
t3
(e∗)2b00((1 + 1

t
)e∗) and is negative.
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with a single bridge experiments, his neighbor in the other community does not effort, hence
an agent with single bridge in the other community experiments as well. Hence, the two bridge
agents with two bridges do no effort, and the information premium equals 2[b(2e∗)−b(e∗)]. Second,
consider the graph with the link. Either a bridge agent i with three bridges effort, and it is best
when ei = e∗, which yields an information premium of 3[b(2e∗) − b(e∗)]. Or only bridge agents
with single bridges effort and the information premium is 2[b(2e∗)− b(e∗)].
Equilibria in core-periphery graphs.

Consider an equilibrium profile e. Clearly, total effort done on the core
P

i∈C ei cannot be
greater than e∗. Suppose that there is a p-core agent i who exerts positive effort, but who is not a
specialist: 0 < ei < e∗. Recall, Ni∩P denotes the set of peripheral neighbors of i. We distinguish
two cases: |Ni ∩ P | = 1 and |Ni ∩ P | ≥ 2.

(1) Suppose that i has a unique peripheral neighbor j. Since j∪Nj ⊂ i∪Ni, Lemma 2 tells us
that agents in C\Nj do no effort. Nj is the set of core agents connected to j, to which i belongs.
There are two cases. (a) ej = 0. In this case, i receives all her information from agents in Nj , and
hence the total effort done on Nj is exactly equal to e∗. This is possible only when agents of Nj

who effort do not have other peripheral neighbors than i. (Since total effort done on Nj is e∗, these
other peripheral neighbors could not effort, hence would receive less than e∗). All core efforters
have the same, unique peripheral neighbor. (b) ej > 0. In this case, ej + ei +

P
Nj\{i} ek = e∗.

If j has other core neighbors than i, j must be their unique peripheral neighbor. Again, all core
experimenters have the same, unique peripheral neighbor.

(2) Suppose that |Ni ∩ P | ≥ 2. Take j ∈ Ni ∩ P . Since j ∪ Nj ⊂ i ∪ Ni, Lemma 2 yields
∀k ∈ Ni\Nj , ek = 0. Thus, all other peripheral neighbors of i do no effort. The same argument
applied to another peripheral neighbor of i implies that ∀k ∈ Ni ∩ P, ek = 0 and all peripheral
neighbors of i do no effort. Thus, for any j peripheral neighbor of i, the total effort done by her
neighbors other than i must be at least equal to e∗− ei. Since these agents all belong to the core,
it means that their total effort is exactly equal to e∗ − ei. Thus, any core experimenter must
be connected to all the neighbors of i and cannot have peripheral neighbors not connected to i.
That is, all core experimenters must have the same peripheral neighbors.

When core agents have distinct neighbors, the only case where a p-core agent exerts positive
effort but is not a specialist is when this agent has a unique peripheral neighbor, who does not
have other neighbors, and all core agents are connected to the periphery (as described in the
Footnote). In general, we showed that there are only two additional possibilities with respect
to the set of equilibria described in the text: (1) When several core agents have a unique and
common peripheral neighbor and when all core agents are connected to the periphery, any profile
such that e∗ is allocated in any way among these core agents and their peripheral neighbor, other
core agents do zero and other peripheral agents are specialists is an equilibrium; and (2) When
several core agents have the same peripheral neighbors, any profile where these core agents exert
a total effort of e∗, their common peripheral neighbors do no effort, other core agents do no effort,
and other peripheral agents are specialists is an equilibrium.
Welfare analysis: sparse links.

Denote by C̊ the set of p-core agents. For each p-core agent j, denote by kj,P the number
of peripheral neighbors of j. That is, kj,P = kj − (|C| − 1). We examine two cases. First,
suppose that some core agent is not connected to the periphery. Consider an equilibrium where
all peripheral agents are specialists. Peripheral agents earn b(e∗) − ce∗, while the p-core core
agent j earns b[(kj,P + 1)e∗]. Welfare in equilibrium equals
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W0 = nb(e∗)− ce∗ +
X
j∈C̊
{b[(kj,P + 1)e∗]− b(e∗)− kj,P ce

∗}

Consider next the equilibrium where i is a p-core specialist. Core agents who are not connected
to the periphery earn b(e∗). Other p-core agent j earns b[(kj,P + 1)e∗], while the payoff of i is
b(e∗) − ce∗. Peripheral agents not connected to i earn b(e∗)− ce∗, while peripheral neighbors of
i earn b(e∗). In the end, welfare equals

Wi = nb(e∗)− ce∗ +
X
j∈C̊
j 6=i

{b[(kj,P + 1)e∗]− b(e∗)− kj,P ce
∗}

Substracting both formulas yields Wi−W0 = −{b[(ki,P +1)e∗]−b(e∗)−ki,P ce∗} which is positive
and increasing with ki,P since b is concave and b0(e∗) = c. Second, suppose that all core agents
are connected to the periphery. The expression for Wi does not change, hence is increasing in
ki,P . Welfare of an equilibrium where core agents do no effort is W 0

0 = nb(e∗)+
P

j∈C̊{b[kj,P e∗]−
b(e∗)−kj,P ce∗} since total effort is equal to zero on the core. Again, substracting both expressions
yields

Wi −W 0
0 = −{b(ki,P e∗)− b(e∗)− (ki,P − 1)ce∗}+

X
j∈C̊
j 6=i

{b[(kj,P + 1)e∗]− b(kj,P e
∗)}

which is positive.
Welfare analysis: dense links.

First, note that any equilibrium has a welfare less than or equal to the welfare of a spe-
cialized equilibrium (even when several core agents have the same set of neighbors). Thus, to
determine second-best profiles we only need to determine which specialized equilibrium yields
greatest welfare. To do this, we compute for all specialized equilibria with maximal independent
set of specialists I the number of links between specialists and non-specialists

P
i∈I ki . Consider

first the equilibrium where p-core agent j is a specialist. Here, the set of specialists is composed
of j and all peripheral agents not connected to j. Since kj = |C| − 1 + |Nj ∩ P |, we obtainP

i∈I ki = |C| − 1 + |Nj ∩ P | +Pi∈P,i/∈Nj
ki. Using the parameter cj , this expression can be

simplified to
P

i∈I ki = |C|−1+
P

i∈P ki−cj . Next, consider the equilibrium where all peripheral
agents are specialists. Here we have to distinguish two cases: (1) There is a core specialist (not
connected to the periphery) and

P
i∈I ki = |C|− 1 +

P
i∈P ki; (2) All core agents are connected

to the periphery and
P

i∈I ki =
P

i∈P ki. Combining these expressions and Proposition 5 leads to
the results described in the text, except for the case when c = 0 and all core agents are connected
to the periphery. In this last case, direct examination of welfare yields the result. Some core agents
are such that all their peripheral neighbors are only connected to them. effort by one of these
core agents with most neighbors yields greatest welfare. (Computations are similar to the case of
the star graph.)
Convex costs.

The formulation of Bergstrom et al. (1986) provides an example of convex experimentation
costs. Individuals allocate their income y between experimentation ei and private good consump-
tion xi. With separable preferences, ui(e, xi) = b(ei + ēi) + a(xi). If the price of private good is
normalized to 1 and the public good price is p, the income constraint becomes xi + pei = y. The
marginal cost of experimenting is now equal to pa0(y− pei). It captures both the direct cost and
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the foregone consumption of private goods and is generally increasing in ei.
With convex experimentation costs c(ei), individual i’s best-response is to play 0 if b0(ēi) ≤

c0(0) and to play ei such that b0(ei + ēi) = c0(ei) otherwise. On the complete graph, there is a
unique equilibrium where the effort of any individual is e such that b0(ne) = c0(e). To extend
Proposition 3, define the number s as the smallest integer such that b0(se∗) ≤ c0(0) where e∗ is
the effort level in isolation. It is well-defined as soon as c0(0) > b0 (∞). For instance, p = 1
and a ≡ b in the previous model yield s = 2. On the circle with 4 individuals, the two maximal
independent sets give rise to two distinct specialized equilibria.

Finally, to illustrate the welfare analysis with convex costs, consider again the case where
p = 1 and a ≡ b. Either ēi < y and ei =

1
2(y− ēi) and ui = 2b[

1
2(y + ēi)], or ēi ≥ y and ei = 0

and ui = b(ēi)+ b(y). Individuals who do no search earn more than individuals who search, hence
specialization still yield information premium. To see that the benefits from specialization might
be greater than the added costs, consider the following core-periphery graph: three agents in
the core and four agents in the periphery who are connected to every core agent. The profile
where each peripheral agent searches 1

2y and agents in the core do no search is a specialized
equilibrium on this graph. Its yields a welfare of W s = 8b(12y) + 3[b(y) + b(2y)]. Any distributed
equilibrium would yield a welfare lower than or equal to W d = 14b(y), because b[12(y+ ēi)] ≤ b(y)
when ei > 0. Specialization yields greater welfare as soon as W s > W d which is equivalent to
b(2y)− b(y) > 4

3 [b(y)− b(12y)], which is clearly possible.
Heterogeneity.

We next construct a specialized equilibrium on any network G. Order agents through de-
creasing thresholds e∗1 ≥ ... ≥ e∗n. Construct a maximal independent set I as follows. Include
individual 1 in I. Then remove 1 and all her neighbors. Add to I the remaining agent with highest
threshold. Then, remove her neighbors and repeat the operation til no agent is left. The profile
where each agent i in I searches e∗i while others do no search is a specialized equilibrium.

Next, consider 4 agents located on the circle and suppose that e∗1 > e∗2 > e∗3 > e∗4. If the
thresholds are not too different, there are two equilibria: (e∗1, 0, e∗3, 0) and (0, e∗2, 0, e∗4).
Longer diffusion.

We show that, even with decay, certain graphs still yield specialized equilibria. Suppose that
information diffuses two steps with decay δ. The set of neighbors of i is still Ni, while N

(2)
i

now denotes the set of individuals two steps away from i. The level of information obtained
through others is now ēi = δ

P
j∈Ni

ej + δ2
P

j∈N(2)
i

ej . The best-response of individual i is still

fi(e) = max(e∗ − ēi, 0). Next, consider the circle with 6 agents. One can see that the profile
where two opposite individuals search e∗ and others do no search is an equilibrium when δ is high
enough (specifically, when δ + δ2 ≥ 1).
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